Package: assessr (via r-universe)

August 23, 2024

Version 1.0.0

Index

Title Performance metrics for probabilitic forecasts

Description This package implements various metrics for assessing the performance of probabilitic forecasts.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
ByteCompile true
Roxygen list(markdown = TRUE)
RoxygenNote 7.0.2
Suggests testthat, covr
Repository https://mrc-ide.r-universe.dev
RemoteUrl https://github.com/mrc-ide/assessr
RemoteRef master
RemoteSha bcdf80172c4aa0b783ac40b80938ed3756e4e115
Contents
abs_madm
avg_residual
bias
mae
prop_in_ci
rel_madm
rel_mae
rel_mean_dvtn
rel_mse

2 abs_madm

abs_madm

MADM

Description

Median absolute deviation about the median

Usage

```
abs_madm(pred)
```

Arguments

pred

T X N Matrix of predictions. Each column is a simulation.

Details

```
median(|pred - median(pred)|)
```

Median absolute deviation about the median is a measure of how clustered the forecasts are. A value of 0 indicates that all the predicted values are the same, thus highly clustered. Large values indicate more diffuse predictions.

Value

vector of length T.

References

https://bit.ly/2vPO0I9

See Also

```
rel_madm()
```

avg_residual 3

avg_residual

Average Residual

Description

Residual averaged acorss simulations

Usage

```
avg_residual(obs, pred)
```

Arguments

obs observed vector T X 1

pred matrix of predicted observations. Each column is a simulation. T X N where N

is the number of simulations.

Details

$$\sum_{i=1}^{N} obs - pred/N$$

Value

error T X 1. Each entry is the error averaged across the simulations.

Author(s)

Sangeeta Bhatia

bias Bias

Description

Bias in probabilistic forecasts

Usage

bias(obs, pred)

Arguments

obs observed vector T X 1

pred Simulated predictions T X N. Each column is a simulation.

4 mae

Details

Bias is measured as

```
2*mean((heaviside(obs-pred))-0.5)
```

where heaviside returns 1 if the arg is positive, 0 if this negative and 0.5 if it is 0. The average is taken over all simulations.

Value

vector of length T.

Author(s)

Sangeeta Bhatia

References

https://doi.org/10.1371/journal.pcbi.1006785

mae

Mean absolute error

Description

Mean absolute error

Usage

mae(obs, pred)

Arguments

obs T X 1 vector of observations.

pred T X N matrix of predictions where each column is a simulation.

Value

T X 1 vector of mean absolute error

Author(s)

Sangeeta Bhatia

prop_in_ci 5

prop_in_ci	Proportion of observations in given credible interval
------------	---

Description

Proportion of observations in given credible interval

Usage

```
prop_in_ci(obs, min, max)
```

Arguments

obs vector of observed values

min vector of the lower end of the interval. Either length 1 vector or the same length

as the that of obs.

wector of the upper end of the interval. Either length 1 or the same length as that

of the obs vector.

Details

Proportion of observed values that fall within a given interval

Value

proportion of values in obs vector that are greater than or equal to min and less than or equal to max.

Author(s)

Sangeeta Bhatia

rel_madm Relative sharpness	rel_madm	Relative sharpness	
-----------------------------	----------	--------------------	--

Description

Relative sharpness: median absolute deviation about the median

Usage

```
rel_madm(pred)
```

Arguments

pred T X N Matrix of predictions. Each column is a simulation.

rel_mae

Details

$$median(|(pred-median(pred))/pred|) \\$$

Value

vector of length T.

References

https://bit.ly/2vPO0I9

See Also

abs_madm()

rel_mae

Relative mean absolute error

Description

Relative mean absolute error

Usage

rel_mae(obs, pred)

Arguments

obs T X 1 vector of observations.

pred T X N matrix of predictions where each column is a simulation.

Details

Relative mean absolute error is defined as

$$\sum_{i=1}^{N}|obs-pred|/N*|obs+1|$$

Value

T X 1 vector of mean absolute error normalised by the observed value.

Author(s)

Sangeeta Bhatia

rel_mean_dvtn 7

rel_mean_dvtn

Relative sharpness

Description

Relative mean absolute deviation about the median

Usage

```
rel_mean_dvtn(pred)
```

Arguments

pred

T X N Matrix of predictions. Each column is a simulation.

Details

$$median(|(pred-median(pred))/pred|) \\$$

Value

vector of length T.

References

https://bit.ly/2vPO0I9

rel_mse

Average relative mean squared error

Description

Relative mean squared error averaged acorss simulations

Usage

```
rel_mse(obs, pred)
```

Arguments

obs observed vector T X 1

pred matrix of predicted observations. Each column is a simulation. T X N where N

is the number of simulations.

8 rel_mse

Details

Relative average mean square error is

$$\sum_{i=1}^{N} (obs - pred)^{2} / N * (obs + 1)^{2}$$

We add 1 to the observed vector to avoid dividing by 0.

Value

error T X 1. Each entry is the error averaged across the simulations

Author(s)

Sangeeta Bhatia

Index

```
abs_madm, 2
abs_madm(), 6
avg_residual, 3
bias, 3
mae, 4
prop_in_ci, 5
rel_madm, 5
rel_madm(), 2
rel_mae, 6
rel_mean_dvtn, 7
rel_mse, 7
```