
Package: context (via r-universe)
June 19, 2024

Title Contexts for evaluating R expressions

Version 0.5.0

Description Contexts for evaluating R expressions.

License MIT + file LICENSE

LazyData true

URL https://github.com/mrc-ide/context

BugReports https://github.com/mrc-ide/context/issues

Depends R (>= 3.2.0)

Imports crayon, ids, storr (>= 1.1.1)

Suggests callr, knitr, mockery, parallel, redux, rmarkdown, testthat,
withr

RoxygenNote 7.2.3

Encoding UTF-8

VignetteBuilder knitr

Language en-GB

Repository https://mrc-ide.r-universe.dev

RemoteUrl https://github.com/mrc-ide/context

RemoteRef master

RemoteSha 62dbb46b1c70c4cfa1404d2f5ecbe6c4933f226c

Contents
bulk_prepare_expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
bulk_task_save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
context_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
context_load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
context_log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
context_read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
context_root_get . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1

https://github.com/mrc-ide/context
https://github.com/mrc-ide/context/issues


2 bulk_prepare_expression

context_save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
last_loaded_context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
parallel_cluster_start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
prepare_expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
restore_locals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
task_context_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
task_delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
task_deps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
task_exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
task_expr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
task_function_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
task_log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
task_reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
task_result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
task_run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
task_run_external . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
task_save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
task_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
task_times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Index 17

bulk_prepare_expression

Prepare many expressions

Description

Prepare many expressions

Usage

bulk_prepare_expression(X, FUN, DOTS, do_call, use_names, envir, db)

Arguments

X Something to iterate over; a vector, list or data.frame (in the case of a data.frame,
iteration will be row-by-row)

FUN A function to apply to each element (or row) of X

DOTS Additional arguments to apply with each elements of X

do_call Treat each element of X as a do.call call

use_names When preparing a data.frame, retain column names as argument names when
using do_call. If FALSE then positional matching will be used.

envir An environment to find variables local to the expression

db A database to store locals



bulk_task_save 3

bulk_task_save Save bulk tasks

Description

Save bulk tasks

Usage

bulk_task_save(
X,
FUN,
context,
DOTS = NULL,
do_call = FALSE,
use_names = TRUE,
envir = parent.frame(),
depends_on = NULL

)

Arguments

X Something to iterate over; a vector, list or data.frame (in the case of a data.frame,
iteration will be row-by-row)

FUN A function to apply to each element (or row) of X

context A context

DOTS Additional arguments to apply with each elements of X

do_call Treat each element of X as a do.call call

use_names When preparing a data.frame, retain column names as argument names when
using do_call. If FALSE then positional matching will be used.

envir An environment to find variables local to the expression

depends_on Optional task ids that this task depends on. To have all tasks depend on the same
id(s) provide a vector. TO provide different dependencies for each task provide
a list of lists. For example list(list("abcde", "12345"), list(), list("12345"))

context_list List save contexts

Description

List saved contexts



4 context_load

Usage

context_list(db, named = FALSE, error = TRUE)

context_info(db, error = TRUE)

Arguments

db Something for which a context database can be created; this can the the path to
the context, a context_root object, or a context object.

named Logical, indicating if the context name should be used to name the output vector.

error Throw an error if the context database cannot be connected constructed (e.g., if
the path given does not exist).

Author(s)

Rich FitzJohn

context_load Load a context

Description

Load a context

Usage

context_load(ctx, envir = .GlobalEnv, refresh = FALSE)

Arguments

ctx A context object, as read by context_read

envir The environment to source files into

refresh Refresh the context, even when it has been loaded already? Note that this may
not always behave as expected because items not created by sourcing an R file
will still be there from previous runs, and packages loaded will not be reloaded
in a new order.



context_log 5

context_log Send entry to context log

Description

Send an entry to the context log. This is designed primarily for use with packages that build off of
context, so that they can log in a consistent way.

Usage

context_log(topic, value)

Arguments

topic Up to 9 character text string with the log topic

value Character string with the log entry

context_read Read a context

Description

Read a context

Usage

context_read(identifier, root, db = NULL)

Arguments

identifier Either the id or name of a context (see context_list)

root Something interpretable as the context root; either

db Optionally, a database (if known already)



6 context_save

context_root_get Find context root

Description

Find the context root. Designed for internal use

Usage

context_root_get(root, db = NULL)

Arguments

root An object; either a character string (interpreted as a path), a context_root
object (such as returned by this function) or a list/environment object with a
root element that is a context_root object.

db Optionally, a copy of the storr database (if already opened). Do not specify this
unless you definitely have the correct database in hand.

context_save Save a context

Description

Save a context

Usage

context_save(
path,
packages = NULL,
sources = NULL,
package_sources = NULL,
envir = NULL,
storage_type = NULL,
storage_args = NULL,
name = NULL,
root_id = NULL

)



last_loaded_context 7

Arguments

path Path to save the context in

packages Optional character vector of packages to save into the context. Alternatively,
can be a list with elements loaded and attached if you want to ensure some
packages are loaded but not attached.

sources Character vector of source files to read in. These should define functions and
(perhaps) other "global" objects, but should not do any serious computation.

package_sources

Optional information about where to find non-CRAN packages, created by conan::conan_sources

envir The current environment. This is used to copy local variables around. For
context_load this is the environment into which the global environment is
copied. Specify a non-global environment here to avoid clobbering the workspace,
but at the risk that some environments may not restore exactly as desired. If this
is used, then every new R session, running context_save will create a new
context id.

storage_type Character vector indicating the storage type to use. Options are "rds" (the de-
fault) and "environment" (for testing and local use).

storage_args Arguments passed through to the storage driver

name An optional name for the context. This will be printed with the context in some
situations (such as context_info)

root_id Force a context root id. This is intended for advanced use only. By setting the
root id, two contexts created with storage in different file locations (path) will
get the same id. This is required for using a server-hosted database to share
a context between different physical machines (or different docker containers).
The id, if provided, must be compatible with ids::random_id() - i.e., a 32
character hex string. This option can be left alone in most situations.

last_loaded_context Return last loaded context

Description

Return the last loaded context

Usage

last_loaded_context(error = TRUE)

Arguments

error Throw an error if no context has been loaded



8 prepare_expression

parallel_cluster_start

Start a sub-cluster

Description

Start a sub-cluster, using the parallel package. This will be available via either the return value
of this function, the parallel_cluster function or by using cl = NULL with any of the parallel
package functions. The cluster will be started so that it is ready to use the context.

Usage

parallel_cluster_start(n, ctx)

parallel_cluster_stop()

parallel_cluster()

Arguments

n The number of nodes. No attempt at guessing this number is made as that is
terribly error prone. If you’re using this function you should know how many
resources you have available.

ctx The context to initialise on each cluster node.

prepare_expression Prepare expression

Description

Prepare expression for evaluation in context

Usage

prepare_expression(expr, envir, db, function_value = NULL)

Arguments

expr A quoted expression consisting of a single function call.

envir An environment to find variables local to the expression

db A database to store locals

function_value Optionally, the value of a function where the expression should involve an
anonymous function. In this case the function in expr will be replaced.



restore_locals 9

Details

The function_value argument here is used where expr is going to take a function that is not
addressable by name; in that case we take a function itself (as "function_value"), serialise it and
replace the function call with the hash. The function will be serialised into the calling environment
on deserialisation.
This includes the remote possibility of a collision, but with the size of the keyspace used for hashes
hopefully it’s negligible.
Because of the approach used here, expr can contain anything; I’d suggest not saving the contents
of the function itself, but something like NULL will work just fine:

as.call(list(NULL, quote(a)))
# NULL(a)

restore_locals Restore locals

Description

Restore locals created by prepare_expression.

Usage

restore_locals(dat, parent, db)

Arguments

dat An expression that has been through prepare_expression. Key elements are
function_hash and objects

parent The parent environment to restore locals to
db The database used to prepare the expression

task_context_id Find context for a task

Description

Find the context id associated with a task

Usage

task_context_id(ids, db)

Arguments

ids Vector of task ids
db Something that can be converted to a context db object (a database, root or

context).



10 task_deps

task_delete Delete a task

Description

Delete a task, including its results.

Usage

task_delete(ids, root)

Arguments

ids Vector of task ids

root A context root (not just the db as in task_result as we need to know the actual
path to the root). A context object is also OK.

Value

TRUE if a task was actually deleted.

task_deps Task dependencies

Description

Task dependencies

Usage

task_deps(ids, db, named = FALSE)

Arguments

ids Vector of task ids

db Something that can be converted to a context db object (a database, root or
context).

named Name the output with the task ids?



task_exists 11

task_exists List tasks

Description

List tasks and test if they exist

Usage

task_exists(ids, db)

task_list(db)

Arguments

ids Vector of task ids

db Something that can be converted to a context db object (a database, root or
context).

task_expr Fetch task expression

Description

Fetch expression for a task

Usage

task_expr(id, db, locals = FALSE)

Arguments

id Single task identifier

db Something that can be converted to a context db object (a database, root or
context).

locals Return locals bound to the expression (as an attribute "locals")



12 task_log

task_function_name Fetch task function name

Description

Fetch function name for a task

Usage

task_function_name(ids, db)

Arguments

ids Vector of task ids

db Something that can be converted to a context db object (a database, root or
context).

task_log Return task log

Description

Return the log of a task, if enabled.

Usage

task_log(id, root, parse = TRUE)

Arguments

id Single task identifier

root A context root (not just the db as in task_result as we need to know the actual
path to the root). A context object is also OK.

parse Parse the log output into a context_log object, which will pretty print and
can be more easily inspected. If FALSE then the raw log will be returned as a
character vector, one element per line of text

Details

The returned object is of class task_log, which has a print method that will nicely display. Output
is grouped into phases.



task_reset 13

task_reset Reset status and submission time of tasks

Description

Reset tasks

Usage

task_reset(id, context)

Arguments

id A vector of task identifiers

context A context object

task_result Fetch task result

Description

Fetch result from completed task.

Usage

task_result(id, db, allow_incomplete = FALSE)

Arguments

id Single task identifier

db Something that can be converted to a context db object (a database, root or
context).

allow_incomplete

Should we avoid throwing an error if a task is not completed? Used internally,
and not generally needed.



14 task_run_external

task_run Run a task

Description

Run a task

Usage

task_run(id, context, filename = NULL)

Arguments

id A task identifier

context A context object

filename Filename to log all output to. This will sink the message stream as well as the
output stream, so if specified (i.e., is non-NULL) then this function will appar-
ently print no output to the console, which will make debugging more difficult
when run interactively. However, when run non-interactively, especially on re-
mote servers, this will allow collection of diagnostics that facilitate debugging.

task_run_external Run a task in separate process

Description

Run a task in a separate process, using [callr::r]. Unlike [context::task_run] this does not return the
value, and is called for the side effect of writing to the context.

Usage

task_run_external(root, identifier, task_id, path_log)

Arguments

root Something interpretable as the context root; either

identifier Either the id or name of a context (see context_list)

task_id A task identifier

path_log Path to log file



task_save 15

task_save Save and reload tasks

Description

Save and reload tasks. Tasks consist of an expression bound to a context.

Usage

task_save(expr, context, envir = parent.frame(), depends_on = NULL)

Arguments

expr An expression to save

context A context object

envir Passed through to context_save when locating local variables.

depends_on Optional vector of task ids that this task depends on

Value

An identifier that can be used to retrieve or run the task later. This is simply a short string.

task_status Task status

Description

Task status

Usage

task_status(ids, db, named = FALSE)

Arguments

ids Vector of task ids

db Something that can be converted to a context db object (a database, root or
context).

named Name the output with the task ids?



16 task_times

task_times Fetch task times

Description

Fetch times taken to queue, run, and since running a task.

Usage

task_times(ids, db, unit_elapsed = "secs", sorted = TRUE)

Arguments

ids Vector of task ids

db Something that can be converted to a context db object (a database, root or
context).

unit_elapsed Elapsed time unit. The default is "secs". This is passed to the as.numeric
method of a difftime object.

sorted Sort the output in terms of submitted time? If FALSE then the output is sorted
based on task ids.

Author(s)

Rich FitzJohn



Index

bulk_prepare_expression, 2
bulk_task_save, 3

context_info, 7
context_info (context_list), 3
context_list, 3, 5, 14
context_load, 4
context_log, 5
context_read, 4, 5
context_root_get, 6
context_save, 6

last_loaded_context, 7

parallel_cluster
(parallel_cluster_start), 8

parallel_cluster_start, 8
parallel_cluster_stop

(parallel_cluster_start), 8
prepare_expression, 8, 9

restore_locals, 9

task_context_id, 9
task_delete, 10
task_deps, 10
task_exists, 11
task_expr, 11
task_function_name, 12
task_list (task_exists), 11
task_log, 12
task_reset, 13
task_result, 10, 12, 13
task_run, 14
task_run_external, 14
task_save, 15
task_status, 15
task_times, 16

17


	bulk_prepare_expression
	bulk_task_save
	context_list
	context_load
	context_log
	context_read
	context_root_get
	context_save
	last_loaded_context
	parallel_cluster_start
	prepare_expression
	restore_locals
	task_context_id
	task_delete
	task_deps
	task_exists
	task_expr
	task_function_name
	task_log
	task_reset
	task_result
	task_run
	task_run_external
	task_save
	task_status
	task_times
	Index

