Package: didehpc (via r-universe)

June 28, 2024

Title DIDE HPC Support
Version 0.3.22

Description DIDE HPC support.
License MIT + file LICENSE

URL https://github.com/mrc-ide/didehpc

BugReports https://github.com/mrc-ide/didehpc/issues
Depends R (>=3.2.2)

Imports conan (>=0.1.1), crayon, context (>= 0.5.0), getPass, glue,
httr (>= 1.0.0), ids, jsonlite (>= 1.6), queuer (>= 0.5.0),
rematch, storr (>= 1.1.1), xmlI2 (>= 1.0.0)

Suggests R6, callr, knitr, mockery, pkgdepends (>= 0.1.0), redux,
rmarkdown, rrq (>= 0.7.0), testthat, withr

RoxygenNote 7.2.3
Roxygen list(markdown = TRUE)

VignetteBuilder knitr

Remotes mrc-ide/conan, mrc-ide/context, mrc-ide/queuer, mrc-ide/rrq
Encoding UTF-8
Language en-GB

Repository https://mrc-ide.r-universe.dev
RemoteUrl https://github.com/mrc-ide/didehpc

RemoteRef master
RemoteSha aa7ee21336397ad740a191f8c2da7¢358698be77

Contents

cluster load
didehpc_config
path_mapping
queue_didehpc

https://github.com/mrc-ide/didehpc
https://github.com/mrc-ide/didehpc/issues

2 didehpc_config
valid_clusters e e 11
web_client e 11
web_login e 15
WOTKEr TESOUICE o o o o e e e e e e e e e e 15

Index 17

cluster_load Overall cluster load

Description

Overall cluster load for all clusters that you have access to.
Usage
cluster_load(credentials = NULL)
Arguments
credentials Your credentials
didehpc_config Configuration
Description
Collects configuration information. Unfortunately there’s a fairly complicated process of working
out what goes where so documentation coming later.
Usage

didehpc_config(

credentials = NULL,
home = NULL,

temp = NULL,

cluster = NULL,

shares = NULL,
template = NULL,

cores = NULL,
wholenode = NULL,
parallel = NULL,
workdir = NULL,
use_workers = NULL,
use_rrq = NULL,
worker_timeout = NULL,
worker_resource = NULL,

didehpc_config 3

conan_bootstrap = NULL,
r_version = NULL,
use_java = NULL,
java_home = NULL

)
didehpc_config_global(..., check = TRUE)
Arguments

credentials Either a list with elements username, password, or a path to a file containing
lines username=<username> and password=<password> or your username (in
which case you will be prompted graphically for your password).

home Path to network home directory, on local system

temp Path to network temp directory, on local system

cluster Name of the cluster to use; one of valid_clusters() or one of the aliases
(small/little/dide/ide; big/mrc).

shares Optional additional share mappings. Can either be a single path mapping (as
returned by path_mapping() or a list of such calls.

template A job template. On fi—dideclusthn this can be "GeneralNodes" or "8Core". On
"fi—-didemrchnb" this can be "GeneralNodes", "12Core", "16Core", "12and16Core",
"20Core", "24Core", "32Core", or "MEM1024" (for nodes with 1Tb of RAM,;
we have three - two of which have 32 cores, and the other is the AMD epyc
with 64). On the new "wpia-hn" cluster, you should currently use "AllNodes".
See the main cluster documentation if you tweak these parameters, as you may
not have permission to use all templates (and if you use one that you don’t have
permission for the job will fail). For training purposes there is also a "Training"
template, but you will only need to use this when instructed to.

cores The number of cores to request. If specified, then we will request this many

cores from the windows queuer. If you request too many cores then your task
will queue forever! 24 is the largest this can be on fi—dideclusthn. On fi—
didemrchnb, the GeneralNodes template has mainly 20 cores or less, with a
single 64 core node, and the 32Core template has 32 core nodes. On wpia-hn,
all the nodes are 32 core. If cores is omitted then a single core is assumed,
unless wholenode is TRUE.

wholenode If TRUE, request exclusive access to whichever compute node is allocated to the
job. Your code will have access to all the cores and memory on the node.

parallel Should we set up the parallel cluster? Normally if more than one core is implied
(via the cores or wholenode arguments, then a parallel cluster will be set up
(see Details). If parallel is set to FALSE then this will not occur. This might be
useful in cases where you want to manage your own job level parallelism (e.g.
using OpenMP) or if you’re just after the whole node for the memory).

workdir The path to work in on the cluster, if running out of place.

use_workers Submit jobs to an internal queue, and run them on a set of workers submitted
separately? If TRUE, then enqueue and the bulk submission commands no longer
submit to the DIDE queue. Instead they create an internal queue that workers

4 didehpc_config

can poll. After queuing tasks, use submit_workers to submit workers that will
process these tasks, terminating when they are done. You can use this approach
to throttle the resources you need.

use_rrq Use rrq to run a set of workers on the cluster. This is an experimental option,
and the interface here may change. For now all this does is ensure a few addi-
tional packages are installed, and tweaks some environment variables in the gen-
erated batch files. Actual rrq workers are submitted with the submit_workers
method of the object.

worker_timeout When using workers (via use_workers or use_rrq, the length of time (in sec-
onds) that workers should be willing to set idle before exiting. If set to zero then
workers will be added to the queue, run jobs, and immediately exit. If greater
than zero, then the workers will wait at least this many seconds after running the
last task before quitting. The number provided can be Inf, in which case the
worker will never exit (but be careful to clean the worker up in this case!). The
default is 600s (10 minutes) should be more than enough to get your jobs up
and running. Once workers are established you can extend or reset the timeout
by sending the TIMEOUT_SET message (proper documentation will come for this
soon).

worker_resource
Optionally, an object created by worker_resource() which controls the re-
sources used by workers where these are different to jobs directly submitted by
$enqueue (). This is only meaningful if you are using use_rrq = TRUE.

conan_bootstrap
Logical, indicating if we should use the shared conan "bootstrap" library stored
on the temporary directory. Setting this to FALSE will install all dependencies
required to install packages first into a temporary location (this may take a few
minutes) before installation. Generally leave this as-is.

r_version A string, or numeric_version object, describing the R version required. Not
all R versions are known to be supported, so this will check against a list of
installed R versions for the cluster you are using. If omitted then: if your R
version matches a version on the cluster that will be used, or the oldest cluster
version that is newer than yours, or the most recent cluster version.

use_java Logical, indicating if the script is going to require Java, for example via the rJava
package.
java_home A string, optionally giving the path of a custom Java Runtime Environment,

which will be used if the use_java logical is true. If left blank, then the default
cluster Java Runtime Environment will be used.

arguments to didehpc_config

check Logical, indicating if we should check that the configuration object can be cre-
ated

Resources and parallel computing

If you need more than one core per task (i.e., you want the each task to do some parallel processing
in addition to the parallelism between tasks) you can do that through the configuration options here.

The template option chooses among templates defined on the cluster.

path_mapping 5

If you specify cores, the HPC will queue your job until an appropriate number of cores appears for
the selected template. This can leave your job queuing forever (e.g., selecting 20 cores on a 16Core
template) so be careful.

Alternatively, if you specify wholenode as TRUE, then you will have exclusive access to whichever
compute node is allocated to your job, reserving all of its cores.

If more than 1 core is requested, either by choosing wholenode, or by specifying a cores value
greater than 1) on startup, a parallel cluster will be started, using parallel: :makePSOCKcluster
and this will be registered as the default cluster. The nodes will all have the appropriate context
loaded and you can immediately use them with parallel::clusterApply and related functions
by passing NULL as the first argument. The cluster will be shut down politely on exit, and logs will
be output to the "workers" directory below your context root.

Workers and rrq

The options use_workers and use_rrq interact, share some functionality, but are quite different.

With use_workers, jobs are never submitted when you run enqueue or one of the bulk submission
commands in queuer. Instead you submit workers using submit_workers and then the submission
commands push task ids onto a Redis queue that the workers monitor.

With use_rrq, enqueue etc still work as before, plus you must submit workers with submit_workers.
The difference is that any job may access the rrq_controller and push jobs onto a central pool of
tasks.

I’m not sure at this point if it makes any sense for the two approaches to work together so this is
disabled for now. If you think you have a use case please let me know.

path_mapping Describe a path mapping

Description

Describe a path mapping for use when setting up jobs on the cluster.

Usage

path_mapping(name, path_local, path_remote, drive_remote)

Arguments
name Name of this map. Can be anything at all, and is used for information purposes
only.
path_local The point where the drive is attached locally. On Windows this will be some-

thing like "Q:/", on Mac something like "/Volumes/mountname", and on Linux
it could be anything at all, depending on what you used when you mounted it
(or what is written in /etc/fstab)

6 queue_didehpc

path_remote The network path for this drive. It will look something like \\\\fi--didef3.dide.ic.ac.uk\\tmp\\.
Unfortunately backslashes are really hard to get right here and you will need to
use twice as many as you expect (so four backslashes at the beginning and then
two for each separator). If this makes you feel bad know that you are not alone:
https://xked.com/1638 — alternatively you may use forward slashes in place of
backslashes (e.g. //fi--didef3.dide.ic.ac.uk/tmp)

drive_remote The place to mount the drive on the cluster. We’re probably going to mount
things at Q: and T: already so don’t use those. And things like C: are likely to
be used. Perhaps there are some guidelines for this somewhere?

Author(s)

Rich FitzJohn

queue_didehpc Create a queue object

Description

Create a queue object. This is an R6::R6Class object which you interact with by calling "methods"
which are described below, and on the help page for queuer::queue_base, from which this derives.

Usage

queue_didehpc(
context,
config = didehpc_config(),
root = NULL,
initialise = TRUE,
provision = NULL,

login = NULL
)
Arguments

context A context

config Optional dide configuration information.

root A root directory, not usually needed

initialise Passed through to the base queue. If you set this to FALSE you will not be able to
submit tasks. By default if FALSE this also sets provision to later and login
to FALSE.

provision A provisioning strategy to use. Options are

queue_didehpc

login

Super class

verylazy (the default) which installs packages if any declared package is
not present, or if the remote library has already been provisioned. This is
lazier than the lazy policy and faster as it avoids fetching package meta-
data, which may take a few seconds. If you have manually adjusted your
library (especially by removing packages) you will probably want to use
lazy or upgrade to account for dependencies of your declared packages.
lazy: which tells pkgdepends to be "lazy" - this prefers to minimise instal-
lation time and does not upgrade packages unless required.

upgrade: which tells pkgdepends to always try and upgrade
later: don’t do anything on creation

fake: don’t do anything but mark the queue as being already provisioned
(this option can come in useful if you really don’t want to risk any acciden-
tal package installation)

Logical, indicating if we should immediately login. If TRUE, then you will be
prompted to login immediately, rather than when a request to the web portal is
made.

gueuer: :queue_base -> queue_didehpc

Public fields

config Your didehpc_config() for this queue. Do not change this after queue creation as changes
may not take effect as expected.

client A web_client object used to communicate with the web portal. See the help page for its
documentation, but you will typically not need to interact with this.

Methods

Public methods:

¢ queue_didehpc_$new()

e queue_didehpc_$login()

e queue_didehpc_$cluster_load()

¢ queue_didehpc_$reconcile()

¢ queue_didehpc_$submit()

e queue_didehpc_$submit_workers()

* queue_didehpc_$stop_workers()

* queue_didehpc_$rrqg_controller()

e queue_didehpc_$unsubmit ()

¢ queue_didehpc_$dide_id()

¢ queue_didehpc_$dide_log()

e queue_didehpc_$provision_context()
e queue_didehpc_$install_packages()

Method new(): Constructor

queue_didehpc

Usage:
queue_didehpc_$new(
context,
config,
root,
initialise,
provision,
login,
client = NULL
)
Arguments:
context, config, root, initialise, provision, login See above
client A web_client object, primarily useful for testing the package

Method login(): Log onto the web portal. This will be called automatically at either when
creating the object (by default) or when you make your first request to the portal. However, you
can call this to refresh the session too.

Usage:

queue_didehpc_$login(refresh = TRUE)

Arguments:

refresh Logical, indicating if we should try logging on again, even if it looks like we already
have. This will refresh the session, which is typically what you want to do.

Method cluster_load(): Report on the overall cluster usage

Usage:
queue_didehpc_$cluster_load(cluster = NULL, nodes = TRUE)

Arguments:

cluster Cluster to show; if TRUE show the entire cluster (via load_overall), if NULL defaults
to the value config$cluster

nodes Show the individual nodes when printing

Method reconcile(): Attempt to reconcile any differences in task state between our database
and the HPC queue. This is needed when tasks have crashed, or something otherwise bad has
happened and you have tasks stuck in PENDING or RUNNING that are clearly not happy. This
function does not play well with workers and you should not use it if using them.

Usage:

queue_didehpc_$reconcile(task_ids = NULL)

Arguments:

task_ids A vector of tasks to check

Method submit(): Submit a task to the queue. Ordinarily you do not call this directly, it is
called by the $enqueue () method of queuer::queue_base when you create a task. However, you
can use this to resubmit a task that has failed if you think it will run successfully a second time
(e.g., because you cancelled it the first time around).

Usage:

queue_didehpc 9

queue_didehpc_$submit(task_ids, names = NULL, depends_on = NULL)

Arguments:

task_ids A vector of task identifiers to submit.

names Optional names for the tasks.

depends_on Optional vector of dependencies, named by task id

Method submit_workers(): Submit workers to the queue. This only works if use_rrq or
use_workers is TRUE in your configuration. See vignette("workers") for more information.
Usage:
queue_didehpc_$submit_workers(n, timeout = 600, progress = NULL)
Arguments:
n The number of workers to submit

timeout The time to wait, in seconds, for all workers to come online. An error will be thrown
if this time is exceeded.

progress Logical, indicating if a progress bar should be printed while waiting for workers.

Method stop_workers(): Stop workers running on the cluster. See vignette("workers") for
more information. By default workers will timeout after 10 minutes of inactivity.

Usage:

queue_didehpc_$stop_workers(worker_ids = NULL)

Arguments:

worker_ids Vector of worker names to try and stop. By default all workers are stopped.

Method rrqg_controller(): Return an rrq::rrq_controller object, if you have set use_rrq or
use_workers in your configuration. This is a lightweight queue using your workers which is
typically much faster than submitting via $enqueue(). See vignette("workers") for more
information.

Usage:

queue_didehpc_$rrqg_controller()

Method unsubmit(): Unsubmit tasks from the cluster. This removes the tasks from the queue
if they have not been started yet, and stops them if currently running. It will have no effect if the
tasks are completed (successfully or errored)

Usage:

queue_didehpc_$unsubmit(task_ids)

Arguments:

task_ids Can be a task id (string), a vector of task ids, a task, a list of tasks, a bundle returned
by enqueue_bulk, or a list of bundles.

Method dide_id(): Find the DIDE task id of your task. This is the number displayed in the
web portal.

Usage:
queue_didehpc_$dide_id(task_ids)

Arguments:

10

queue_didehpc

task_ids Vector of task identifiers to look up

Method dide_log(): Return the pre-context log of a task. Use this to find out what has happened
to a task that has unexpectedly failed, but for which $log() is uninformative.

Usage:
queue_didehpc_$dide_log(task_id)

Arguments:
task_id A single task id to check

Method provision_context(): Provision your context for running on the cluster. This sets
up the remote set of packages that your tasks will use. See vignette("packages"”) for more
information.
Usage:
queue_didehpc_$provision_context(
policy = "verylazy”,
dryrun = FALSE,
quiet = FALSE,
show_progress = NULL,
show_log = TRUE
)

Arguments:

policy The installation policy to use, as interpreted by pkgdepends: : pkg_solution - so this
should be verylazy/lazy (install missing packages but don’t upgrade unless needed) or
upgrade (upgrade packages as possible). In addition you can also use later which does
nothing, or fake which pretends that it ran the provisioning. See vignette("”packages")
for details on these options.

dryrun Do a dry run installation locally - this just checks that your requested set of packages
is plausible, but does this without submitting a cluster job so it may be faster.

quiet Logical, controls printing of informative messages

show_progress Logical, controls printing of a spinning progress bar

show_log Logical, controls printing of the log from the cluster

Method install_packages(): Install packages on the cluster. This can be used to more directly
install packages on the cluster than the $provision_context method that you would typically
use. See vignette("packages”) for more information.

Usage:
queue_didehpc_$install_packages(
packages,
repos = NULL,
policy = "lazy”,
dryrun = FALSE,
show_progress = NULL,
show_log = TRUE
)

Arguments:

valid_clusters 11

packages A character vector of packages to install. These can be names of CRAN pack-
ages or GitHub references etc; see pkgdepends: :new_pkg_installation_proposal()
and vignette("packages”) for more details

repos A character vector of repositories to use when installing. A suitable CRAN repo will be
added if not detected.

policy The installation policy to use, as interpreted by pkgdepends: : pkg_solution - so this
should be lazy (install missing packages but don’t upgrade unless needed) or upgrade
(upgrade packages as possible). In addition you can also use later which does nothing, or
fake which pretends that it ran the provisioning. See vignette("packages") for details
on these options.

dryrun Do a dry run installation locally - this just checks that your requested set of packages
is plausible, but does this without submitting a cluster job so it may be faster.

show_progress Logical, controls printing of a spinning progress bar

show_log Logical, controls printing of the log from the cluster

valid_clusters Valid DIDE clusters

Description

Valid cluster names

Usage

valid_clusters()

web_client DIDE cluster web client

Description

DIDE cluster web client

DIDE cluster web client

Details

Client for the DIDE cluster web interface.

12 web_client

Methods
Public methods:

e web_client$new()

e web_client$login()

* web_client$logout()

* web_client$logged_in()

e web_client$check_access()
e web_client$submit()

* web_client$cancel ()

e web_client$log()

* web_client$status_user()
e web_client$status_job()

e web_client$load_node()

* web_client$load_overall()
* web_client$load_show()

¢ web_client$headnodes()

e web_client$r_versions()

e web_client$api_client()

Method new(): Create an API client for the DIDE cluster

Usage:
web_client$new(
credentials = NULL,
cluster_default = "fi--dideclusthn”,
login = FALSE,
client = NULL
)
Arguments:
credentials FEither your username, or a list with at least the element username and possibly
the name ‘password. If not given, your password will be prompted for at login.
cluster_default The default cluster to use; this can be overridden in any command.
login Logical, indicating if we should immediately login
client Optional API client object - if given then we prefer this object rather than trying to
create a new client with the given credentials.

Method login(): Log in to the cluster

Usage:
web_client$login(refresh = TRUE)

Arguments:

refresh Logical, indicating if we should login even if it looks like we are already (useful if
login has expired)

Method logout(): Log the client out

web_client 13

Usage:
web_client$logout ()

Method logged_in(): Test whether the client is logged in, returning TRUE or FALSE.
Usage:
web_client$logged_in()

Method check_access(): Validate that we have access to a given cluster
Usage:
web_client$check_access(cluster = NULL)
Arguments:

cluster The name of the cluster to check, defaulting to the value given when creating the
client.

Method submit(): Submit a job to the cluster
Usage:
web_client$submit(
path,
name,
template,
cluster = NULL,
resource_type = "Cores”,
resource_count = 1,
depends_on = NULL
)
Arguments:
path The path to the job to submit. This must be a windows (UNC) network path, starting with
two backslashes, and must be somewhere that the cluster can see.
name The name of the job (will be displayed in the web interface).
template The name of the template to use.
cluster The cluster to submit to, defaulting to the value given when creating the client.
resource_type The type of resource to request (either Cores or Nodes)
resource_count The number of resources to request
depends_on Optional. A vector of dide ids that this job depends on.

Method cancel(): Cancel a cluster task
Usage:
web_client$cancel (dide_id, cluster = NULL)
Arguments:
dide_id The DIDE task id for the task
cluster The cluster that the task is running on, defaulting to the value given when creating the
client.

Returns: A named character vector with a status reported by the cluster head node. Names
will be the values of dide_id and values one of OK, NOT_FOUND, WRONG_USER, WRONG_STATE,
ID_ERROR

web_client

Method log(): Getlog from job
Usage:
web_client$log(dide_id, cluster = NULL)
Arguments:
dide_id The DIDE task id for the task

cluster The cluster that the task is running on, defaulting to the value given when creating the
client.

Method status_user(): Return status of all your jobs

Usage:
web_client$status_user(state = "*", cluster = NULL)

Arguments:

state The state the job is in. Can be one of Running, Finished, Queued, Failed or Cancelled.
Or give * for all states (this is the default).
cluster The cluster to query, defaulting to the value given when creating the client.

Method status_job(): Return status of a single job
Usage:
web_client$status_job(dide_id, cluster = NULL)
Arguments:
dide_id The id of the job - this will be an integer
cluster The cluster to query, defaulting to the value given when creating the client.

Method load_node(): Return an overall measure of cluster use, one entry per node within a
cluster.

Usage:

web_client$load_node(cluster = NULL)

Arguments:
cluster The cluster to query, defaulting to the value given when creating the client.

Method load_overall(): Return an overall measure of cluster use, one entry per cluster that
you have access to. Helper function; wraps around load_overall and load_node and always
shows the output.

Usage:

web_client$load_overall()

Method load_show():

Usage:
web_client$load_show(cluster = NULL, nodes = TRUE)

Arguments:

cluster Cluster to show; if TRUE show the entire cluster (via load_overall), if NULL defaults
to the value given when the client was created.

nodes Show the nodes when printing

web_login 15

Method headnodes(): Return a vector of known cluster headnodes. Typically valid_clusters()
will be faster. This endpoint can be used as a relatively fast "ping" to check that you are logged in
the client and server are talking properly.

Usage:
web_client$headnodes(forget = FALSE)

Arguments:

forget Logical, indicating we should re-fetch the value from the server where we have previ-
ously fetched it.

Method r_versions(): Return a vector of all available R versions

Usage:
web_client$r_versions()

Method api_client(): Returns the low-level API client for debugging

Usage:
web_client$api_client()

web_login Test cluster login

Description

Test cluster login

Usage

web_login(credentials = NULL)

Arguments
credentials Your credentials
worker_resource Specify worker resources
Description

Specify resources for worker processes. If given, the values here will override those in didehpc_config().
See vignette("workers") for more details.

16 worker_resource

Usage

worker_resource(
template = NULL,
cores = NULL,
wholenode = NULL,
parallel = NULL

Arguments

template A job template. On fi—dideclusthn this can be "GeneralNodes" or "8Core". On
"fi—-didemrchnb" this can be "GeneralNodes", "12Core", "16Core", "12and16Core",
"20Core", "24Core", "32Core", or "MEM1024" (for nodes with 1Tb of RAM;
we have three - two of which have 32 cores, and the other is the AMD epyc
with 64). On the new "wpia-hn" cluster, you should currently use "AllNodes".
See the main cluster documentation if you tweak these parameters, as you may
not have permission to use all templates (and if you use one that you don’t have
permission for the job will fail). For training purposes there is also a "Training"
template, but you will only need to use this when instructed to.

cores The number of cores to request. If specified, then we will request this many
cores from the windows queuer. If you request too many cores then your task
will queue forever! 24 is the largest this can be on fi—dideclusthn. On fi—
didemrchnb, the GeneralNodes template has mainly 20 cores or less, with a
single 64 core node, and the 32Core template has 32 core nodes. On wpia-hn,
all the nodes are 32 core. If cores is omitted then a single core is assumed,
unless wholenode is TRUE.

wholenode If TRUE, request exclusive access to whichever compute node is allocated to the
job. Your code will have access to all the cores and memory on the node.

parallel Should we set up the parallel cluster? Normally if more than one core is implied
(via the cores or wholenode arguments, then a parallel cluster will be set up
(see Details). If parallel is set to FALSE then this will not occur. This might be
useful in cases where you want to manage your own job level parallelism (e.g.
using OpenMP) or if you’re just after the whole node for the memory).

Value

A list with class worker_resource which can be passed into didehpc_config

Index

cluster_load, 2

didehpc_config, 2, 16

didehpc_config(), 7, 15

didehpc_config_global (didehpc_config),
2

path_mapping, 5

path_mapping(), 3

pkgdepends: :new_pkg_installation_proposal(),
11

queue_didehpc, 6
queue_didehpc_ (queue_didehpc), 6
gueuer: :queue_base, 6—8

R6::R6Class, 6
rrqg::rrg_controller, 9

valid_clusters, 11
valid_clusters(), 3, 15

web_client, 7, 8, 11
web_login, 15
worker_resource, 15
worker_resource(), 4

17

	cluster_load
	didehpc_config
	path_mapping
	queue_didehpc
	valid_clusters
	web_client
	web_login
	worker_resource
	Index

