
Package: dust2 (via r-universe)
September 17, 2024

Title Next Generation dust

Version 0.1.6

Description Experimental sources for the next generation of dust,
which will properly adopt the particle filter, have support for
partial parameter updates, support for multiple parameter sets
and hopefully better GPU/MPI support.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Language en-GB

URL https://github.com/mrc-ide/dust2, https://mrc-ide.github.io/dust2

BugReports https://github.com/mrc-ide/dust2/issues

Imports cli, monty, rlang

LinkingTo cpp11, monty

Suggests cpp11, decor, glue, knitr, mockery, numDeriv, pkgbuild,
pkgload, rmarkdown, testthat (>= 3.0.0), withr

VignetteBuilder knitr

Config/testthat/edition 3

Config/Needs/compile cpp11, decor, glue, pkgbuild, pkgload

Remotes mrc-ide/monty

Repository https://mrc-ide.r-universe.dev

RemoteUrl https://github.com/mrc-ide/dust2

RemoteRef main

RemoteSha bd41f112035cd447fabc6fd132a6ed2bc9f28398

1

https://github.com/mrc-ide/dust2
https://mrc-ide.github.io/dust2
https://github.com/mrc-ide/dust2/issues

2 dust_compile

Contents
dust_compile . 2
dust_filter_create . 4
dust_filter_data . 5
dust_likelihood_copy . 6
dust_likelihood_last_gradient . 6
dust_likelihood_last_history . 7
dust_likelihood_last_state . 8
dust_likelihood_monty . 8
dust_likelihood_rng_state . 10
dust_likelihood_run . 11
dust_ode_control . 12
dust_package . 13
dust_system_compare_data . 14
dust_system_create . 14
dust_system_internals . 16
dust_system_reorder . 16
dust_system_rng_state . 17
dust_system_run_to_time . 18
dust_system_set_state . 18
dust_system_set_state_initial . 19
dust_system_set_time . 19
dust_system_simulate . 20
dust_system_state . 20
dust_system_time . 21
dust_system_update_pars . 22
dust_unfilter_create . 22

Index 24

dust_compile Compile a dust2 system

Description

Compile a dust2 system from a C++ input file. This function will compile the dust support around
your system and return an object that you can call with no arguments to make a dust_system_generator
object, suitable for using with dust functions (starting from dust_system_create).

Usage

dust_compile(
filename,
quiet = FALSE,
workdir = NULL,
linking_to = NULL,
cpp_std = NULL,

dust_compile 3

compiler_options = NULL,
optimisation_level = NULL,
debug = FALSE,
skip_cache = FALSE

)

Arguments

filename The path to a single C++ file

quiet Logical, indicating if compilation messages from pkgbuild should be displayed.
Error messages will be displayed on compilation failure regardless of the value
used.

workdir Optional working directory to use. If NULL, we work in the session-specific
temporary directory. By using a different directory of your choosing you can
see the generated code.

linking_to Optionally, a character vector of additional packages to add to the DESCRIPTION’s
LinkingTo field. Use this when your system pulls in C++ code that is packaged
within another package’s header-only library.

cpp_std The C++ standard to use, if you need to set one explicitly. See the section "Using
C++ code" in "Writing R extensions" for the details of this, and how it interacts
with the R version currently being used. For R 4.0.0 and above, C++11 will be
used; as dust depends on at least this version of R you will never need to specify
a version this low. Sensible options are C++14, C++17, etc, depending on the
features you need and what your compiler supports.

compiler_options

A character vector of additional options to pass through to the C++ compiler.
These will be passed through without any shell quoting or validation, so check
the generated commands and outputs carefully in case of error. Note that R will
apply these before anything in your personal Makevars.

optimisation_level

A shorthand way of specifying common compiler options that control optimisa-
tion level. By default (NULL) no options are generated from this, and the opti-
misation level will depend on your user Makevars file. Valid options are none
which disables optimisation (-O0), which will be faster to compile but much
slower, standard which enables standard level of optimisation (-O2), useful if
your Makevars/pkgload configuration is disabling optimisation, or max (-O3 and
--fast-math) which enables some slower-to-compile and potentially unsafe
optimisations. These options are applied after compiler_options and may
override options provided there. Note that as for compiler_options, R will
apply these before anything in your personal Makevars

debug Passed to pkgbuild::compile_dll, this will build a debug library.

skip_cache Logical, indicating if the cache of previously compiled systems should be skipped.
If TRUE then your system will not be looked for in the cache, nor will it be added
to the cache after compilation.

https://simonbyrne.github.io/notes/fastmath/

4 dust_filter_create

Value

A function, which can be called with no arguments to yield a dust_system_generator function.

dust_filter_create Create a particle filter

Description

Create a particle filter object

Usage

dust_filter_create(
generator,
time_start,
data,
n_particles,
n_groups = NULL,
dt = 1,
index_state = NULL,
n_threads = 1,
preserve_group_dimension = FALSE,
seed = NULL

)

Arguments

generator A system generator object, with class dust_system_generator. The system
must support compare_data to be used with this function.

time_start The start time for the simulation - this is typically before the first data point.
Must be an integer-like value.

data The data to fit to. This can be a data.frame, in which case it will be passed
into dust_filter_data for validation, or it can be a dust_filter_data-augmented
data.frame. The times for comparison will be taken from this, and time_start
must be no later than than the earliest time.

n_particles The number of particles to run. Larger numbers will give lower variance in the
likelihood estimate but run more slowly.

n_groups The number of parameter groups. If NULL, this will be taken from data. If given,
then the number of groups in data will be checked against this number.

dt The time step for discrete time systems, defaults to 1 if not given. It is an error
to provide a non-NULL argument with continuous-time systems.

index_state An optional index of states to extract. If given, then we subset the system state
on return. You can use this to return fewer system states than the system ran
with, to reorder states, or to name them on exit (names present on the index will
be copied into the rownames of the returned array).

dust_filter_data 5

n_threads Integer, the number of threads to use in parallelisable calculations. See Details.

preserve_group_dimension

Logical, indicating if state and output from the system should preserve the group
dimension in the case where a single group is run. In the case where more
than one group is run, this argument has no effect as the dimension is always
preserved.

seed Optionally, a seed. Otherwise we respond to R’s RNG seed on initialisation.

Value

A dust_likelihood object, which can be used with dust_likelihood_run

dust_filter_data Prepare data

Description

Prepare data for use with dust_unfilter_create or dust_filter_create. You do not have to use this
function if you name your data.frame with our standard column names (i.e., time column containing
the time) as it will be called within the filter functions directly. However, you can use this to validate
your data separately or to use different columns than the defaults.

Usage

dust_filter_data(data, time = NULL, group = NULL)

Arguments

data A data.frame containing time and data to fit. By default we expect a column
time (or one with the name given as the argument time) and one or more
columns of data to fit to.

time Optional name of a column within data to use for time.

group Optional name of a column within data to use for groups

Value

A data.frame, with the addition of the class attribute dust_filter_data; once created you should
not modify this object.

6 dust_likelihood_last_gradient

dust_likelihood_copy Create copy of a dust likelihood object

Description

Create an independent copy of a likelihood object. The new object is decoupled from the random
number streams of the parent object. It is also decoupled from the state size of the parent object, so
you can use this to create a new object where the system is fundamentally different but everything
else is the same.

Usage

dust_likelihood_copy(obj, seed = NULL)

Arguments

obj A dust_filter object, created by dust_filter_create or a dust_unfilter object
created by dust_unfilter_create

seed The seed for the particle filter (see dust_filter_create)

Value

A new dust_likelihood object

dust_likelihood_last_gradient

Fetch last likelihood gradient

Description

Fetch the last gradient created by running an likelihood. This errors if the last call to dust_likelihood_run
did not use adjoint = TRUE. The first time you call this (after a particular set of parameters) it will
trigger running the reverse model.

Usage

dust_likelihood_last_gradient(obj, index_group = NULL)

Arguments

obj A dust_filter object, created by dust_filter_create or a dust_unfilter object
created by dust_unfilter_create

index_group An optional vector of group indices to run the calculation for. You can use this
to run a subset of possible groups, once obj is initialised (this argument must be
NULL on the first call).

dust_likelihood_last_history 7

Value

A vector (if ungrouped) or a matrix (if grouped).

dust_likelihood_last_history

Fetch last likelihood history

Description

Fetch the last history created by running a likelihood. This errors if the last call to dust_likelihood_run
did not use save_history = TRUE.

Usage

dust_likelihood_last_history(
obj,
index_group = NULL,
select_random_particle = FALSE

)

Arguments

obj A dust_filter object, created by dust_filter_create or a dust_unfilter object
created by dust_unfilter_create

index_group An optional vector of group indices to run the calculation for. You can use this
to run a subset of possible groups, once obj is initialised (this argument must be
NULL on the first call).

select_random_particle

Logical, indicating if we should return a history for one randomly selected par-
ticle (rather than the entire history). If this is TRUE, the particle will be selected
independently for each group, if the object is grouped. This option is intended
to help select a representative trajectory during an MCMC. When TRUE, we drop
the particle dimension of the return value.

Value

An array. If ungrouped this will have dimensions state x particle x time, and if grouped then
state x particle x group x time. If select_random_particle = TRUE, the second (particle)
dimension will be dropped.

8 dust_likelihood_monty

dust_likelihood_last_state

Get likelihood state

Description

Get the last state from a likelihood.

Usage

dust_likelihood_last_state(
obj,
index_group = NULL,
select_random_particle = FALSE

)

Arguments

obj A dust_filter object, created by dust_filter_create or a dust_unfilter object
created by dust_unfilter_create

index_group An optional vector of group indices to run the calculation for. You can use this
to run a subset of possible groups, once obj is initialised (this argument must be
NULL on the first call).

select_random_particle

Logical, indicating if we should return a history for one randomly selected par-
ticle (rather than the entire history). If this is TRUE, the particle will be selected
independently for each group, if the object is grouped. This option is intended
to help select a representative trajectory during an MCMC. When TRUE, we drop
the particle dimension of the return value.

Value

An array. If ungrouped this will have dimensions state x particle, and if grouped then state
x particle x group. If select_random_particle = TRUE, the second (particle) dimension will
be dropped. This is the same as the state returned by dust_likelihood_last_history without the time
dimension but also without any state index applied (i.e., we always return all state).

dust_likelihood_monty Create monty model

Description

Create a monty_model from a dust_likelihood object.

dust_likelihood_monty 9

Usage

dust_likelihood_monty(
obj,
packer,
initial = NULL,
domain = NULL,
failure_is_impossible = FALSE

)

Arguments

obj A dust_likelihood object, created from dust_filter_create or dust_unfilter_create

packer A parameter packer, which will convert between an unstructured vector of pa-
rameters as used in an MCMC into the list of parameters that the dust system
requires.

initial Optionally, a function to create initial conditions from unpacked parameters.

domain Optionally, domain information to pass into the model. If given, this is a two col-
umn matrix with row names corresponding to the parameter names in packer,
the first column representing the lower bound and the second column represent-
ing the upper bound. You do not need to specify parameters that have a domain
of (-Inf, Inf) as this is assumed. We use monty::monty_domain_expand to
expand logical parameters, so if you have a vector-valued parameter b and a
domain entry called b we will expand this to all elements of b.

failure_is_impossible

Logical, indicating if an error while computing the likelihood should be treated
as a log-density of -Inf (i.e., that this point is impossible). This is a big hammer
to use, and you would be better off using the domain (with reflecting boundaries)
or the priors to control this if possible. However, sometimes you can have inte-
gration failures with very high parameter values, or just other pathalogical pa-
rameter sets where, once you understand the model, giving up on that parameter
set and continuing is the best option.

Value

A monty::monty_model object

Random number streams

This section is only relevant if your likelihood object is a particle filter, and therefore uses random
numbers.

The short version: the seed argument that you may have passed to dust_filter_create will be ignored
when using a dust_likelihood_monty model with algorithms from monty. You should generally
not worry about this, it is expected.

When you initialise a filter, you provide a random number seed argument. Your filter will use
n_groups * (n_particles + 1) streams (one for the filter for each group, then for each group

10 dust_likelihood_rng_state

one per particle). If you run the filter directly (e.g., with dust_likelihood_run then you will ad-
vance the state of the filter). However, if you use the filter with monty (which is why you’re using
dust_likelihood_monty) we will ignore this seeding.

When running mcmc with n_chains chains, we need n_chains * n_groups * (n_particles + 1)
random number streams - that is enough streams for every chain to have a filter with its own set of
chains. monty will look after this for us, but the upshot is that the random number state that you
may have previously set when building the filter will be ignored as we need to create a series of
suitable seeds.

The seeds provided by monty will start at some point in the RNG state space (2^256 possible states
by default). In an MCMC, each chain will have a seed that is created by performing a "long jump",
moving 2^192 steps along the chain. Then within each chain we will take a series of "jumps" (2^128
steps) for each of the streams we need across the groups, filters and particles. This ensures indepen-
dence across the stochastic components of the system but also the reproducibility and predictability
of the system. The initial seeding performed by monty will respond to R’s RNG (i.e., it will follow
set.seed) if an explicit seed is not given.

dust_likelihood_rng_state

Get filter RNG state

Description

Get random number generator (RNG) state from the particle filter.

Usage

dust_likelihood_rng_state(obj)

dust_likelihood_set_rng_state(obj, rng_state)

Arguments

obj A dust_filter object, created by dust_filter_create or a dust_unfilter object
created by dust_unfilter_create

rng_state A raw vector of random number generator state, returned by dust_likelihood_rng_state

Value

A raw vector, this could be quite long. Later we will describe how you might reseed a filter or
system with this state.

dust_likelihood_run 11

dust_likelihood_run Compute likelihood

Description

Compute a log likelihood based on a dynamical model, either from particle filter (created with
dust_filter_create) or a deterministic model (created with dust_unfilter_create).

Usage

dust_likelihood_run(
obj,
pars,
initial = NULL,
save_history = FALSE,
adjoint = NULL,
index_group = NULL

)

Arguments

obj A dust_filter object, created by dust_filter_create or a dust_unfilter object
created by dust_unfilter_create

pars Optional parameters to compute the likelihood with. If not provided, parameters
are not updated

initial Optional initial conditions, as a matrix (state x particle) or 3d array (state x
particle x group). If not provided, the system initial conditions are used.

save_history Logical, indicating if the simulation history should be saved while the simulation
runs; this has a small overhead in runtime and in memory. History (particle
trajectories) will be saved at each time for which you have data. If obj was
constructed using a non-NULL index_state parameter, the history is restricted
to these states.

adjoint Optional logical, indicating if we should enable adjoint history saving. This is
enabled by default if your model has an adjoint, but can be disabled or enabled
even when your model does not support adjoints! But if you don’t actually have
an adjoint you will not be able to compute gradients. This has no effect for
stochastic models.

index_group An optional vector of group indices to run the calculation for. You can use this
to run a subset of possible groups, once obj is initialised (this argument must be
NULL on the first call).

Value

A vector of likelihood values, with as many elements as there are groups.

12 dust_ode_control

dust_ode_control Create a dust_ode_control object.

Description

Create a control object for controlling the adaptive stepper for systems of ordinary differential equa-
tions (ODEs). The returned object can be passed into a continuous-time dust model on initialisation.

Usage

dust_ode_control(
max_steps = 10000,
atol = 1e-06,
rtol = 1e-06,
step_size_min = 0,
step_size_max = Inf,
debug_record_step_times = FALSE

)

Arguments

max_steps Maxmimum number of steps to take. If the integration attempts to take more
steps that this, it will throw an error, stopping the integration.

atol The per-step absolute tolerance.

rtol The per-step relative tolerance. The total accuracy will be less than this.

step_size_min The minimum step size. The actual minimum used will be the largest of the
absolute value of this step_size_min or .Machine$double.eps (or the single-
precision equivalent once we support float-based models). If the integration
attempts to make a step smaller than this, it will throw an error, stopping the
integration.

step_size_max The largest step size. By default there is no maximum step size (Inf) so the
solver can take as large a step as it wants to. If you have short-lived fluctuations
in your rhs that the solver may skip over by accident, then specify a smaller
maximum step size here.

debug_record_step_times

Logical, indicating if the step times should be recorded. This should only be en-
abled for debugging. Step times can be retrieved via dust_system_internals().

Value

A named list of class "dust_ode_control". Do not modify this after creation.

dust_package 13

dust_package Create dust system in package

Description

Creates or updates the generated code for a set of dust systems in a package. The user-provided code
is assumed to be in inst/dust as a series of C++ files; a file inst/dust/x.cpp will be transformed
into a file src/x.cpp.

Usage

dust_package(path, quiet = FALSE)

Arguments

path Path to the package

quiet Passed to cpp11::cpp_register, if TRUE suppresses informational notices about
updates to the cpp11 files

Details

Classes used within a package must be distinct; typically these will match the filenames.

We add "cpp11 attributes" to the created functions, and will run cpp11::cpp_register() on them
once the generated code has been created.

Your package needs a src/Makevars file to enable openmp (if your system supports it). If it is not
present then a suitable Makevars will be written, containing

PKG_CXXFLAGS=$(SHLIB_OPENMP_CXXFLAGS)
PKG_LIBS=$(SHLIB_OPENMP_CXXFLAGS)

following "Writing R Extensions" (see section "OpenMP support"). If your package does contain a
src/Makevars file we do not attempt to edit it but will error if it looks like it does not contain these
lines or similar.

You also need to make sure that your package loads the dynamic library; if you are using roxygen,
then you might create a file (say, R/zzz.R) containing

#' @useDynLib packagename, .registration = TRUE
NULL

substituting packagename for your package name as appropriate. This will create an entry in
NAMESPACE.

Value

Nothing, this function is called for its side effects

14 dust_system_create

dust_system_compare_data

Compare system state against data

Description

Compare current system state against data. This is only supported for systems that have ’com-
pare_data’ support (i.e., the system definition includes a compare_data method). The current state
in the system (dust_system_state) is compared against the data provided as data.

Usage

dust_system_compare_data(sys, data)

Arguments

sys A dust_system object

data The data to compare against. If the system is ungrouped then data is a list with
elements corresponding to whatever your system requires. If your system is
grouped, this should be a list with as many elements as your system has groups,
with each element corresponding to the data your system requires.

Value

A numeric vector with as many elements as your system has groups, corresponding to the log-
likelihood of the data for each group.

dust_system_create Create a dust system object

Description

Create a dust system object from a system generator. This allocates a system and sets an initial set
of parameters. Once created you can use other dust functions to interact with it.

Usage

dust_system_create(
generator,
pars,
n_particles,
n_groups = 1,
time = 0,
dt = NULL,
ode_control = NULL,

dust_system_create 15

seed = NULL,
deterministic = FALSE,
n_threads = 1,
preserve_particle_dimension = FALSE,
preserve_group_dimension = FALSE

)

Arguments

generator A system generator object, with class dust_system_generator

pars A list of parameters. The format of this will depend on the system. If n_groups
is 1 or more, then this must be a list of length n_groups where each element is
a list of parameters for your system.

n_particles The number of particles to create.

n_groups Optionally, the number of parameter groups

time The initial time, defaults to 0

dt The time step for discrete time systems, defaults to 1 if not given. It is an error
to provide a non-NULL argument with continuous-time systems.

ode_control The ODE integration control for continuous time systems. Defaults to the de-
fault return of dust_ode_control. It is an error to provide this with discrete-time
systems.

seed Optionally, a seed. Otherwise we respond to R’s RNG seed on initialisation.

deterministic Logical, indicating if the system should be allocated in deterministic mode.

n_threads Integer, the number of threads to use in parallelisable calculations. See Details.
preserve_particle_dimension

Logical, indicating if output from the system should preserve the particle dimen-
sion in the case where a single particle is run. In the case where more than one
particle is run, this argument has no effect as the dimension is always preserved.

preserve_group_dimension

Logical, indicating if state and output from the system should preserve the group
dimension in the case where a single group is run. In the case where more
than one group is run, this argument has no effect as the dimension is always
preserved.

Value

A dust_system object, with opaque format.

Parallelisation

Many calculations within a dust system can be parallelised straightforwardly - the most important of
these is typically running the model (via dust_system_run_to_time or dust_system_simulate) but we
also parallelise dust_system_set_state_initial, dust_system_compare_data and even dust_system_reorder.
You need to set the number of threads for parallelism at system creation, and this number cannot be
usefully larger than n_particles (or n_particles * n_groups if you have a grouped system).

16 dust_system_reorder

dust_system_internals Fetch system internals

Description

Return internal data from the system. This is intended for debugging only, and all formats are
subject to change.

Usage

dust_system_internals(sys, include_coefficients = FALSE)

Arguments

sys A dust_system object

include_coefficients

Boolean, indicating if interpolation coefficients should be included in the output.
These are intentionally undocumented for now.

Value

If sys is a discrete-time system, this function returns NULL, as no internal data is stored. Other-
wise, for a continuous-time system we return a data.frame of statistics with one row per particle.
Most of the columns are simple integers or numeric values, but dydt (the current derivative of
the target function with respect to time) and step_times (times that the solver has stopped at,
if debug_record_step_times is in dust_ode_control was set to TRUE) will be a list of columns,
each element of which is a numeric vector. If include_coefficients is TRUE, the coefficients
column exists and holds a list of coefficients (the structure of these may change over time, too).

dust_system_reorder Reorder states

Description

Reorder states within a system. This function is primarily used for debugging and may be removed
from the interface if it is not generally useful.

Usage

dust_system_reorder(sys, index)

dust_system_rng_state 17

Arguments

sys A dust_system object

index The parameter ordering. For an ungrouped system this is a vector where each
element is the parameter index (if element i is j then after reordering the ith
particle will have the state previously used by j). All elements must lie in
[1, n_particles], repetition of an index is allowed (so that many new par-
ticles may have the state as one old particle). If the system is grouped, index
must be a matrix with n_particles rows and n_groups columns, with each
column corresponding to the reordering for a group.

Value

Nothing, called for side effects only.

dust_system_rng_state Fetch and set rng state

Description

Fetch, and set, the random number generator (RNG) state from the system.

Usage

dust_system_rng_state(sys)

dust_system_set_rng_state(sys, rng_state)

Arguments

sys A dust_system object

rng_state A raw vector of random number generator state, returned by dust_system_rng_state

Value

A raw vector, this could be quite long.

See Also

You can pass the state you get back from this function as the seed object to dust_system_create
and dust_system_set_rng_state

18 dust_system_set_state

dust_system_run_to_time

Run system

Description

Run a system, advancing time and the state by repeatedly running its update method. You can
advance a system up to a time (which must be in the future).

Usage

dust_system_run_to_time(sys, time)

Arguments

sys A dust_system object

time Time to run to

Value

Nothing, called for side effects only

dust_system_set_state Set system state

Description

Set system state. Takes a multidimensional array (2- or 3d depending on if the system is grouped or
not). Dimensions of length 1 will be recycled as appropriate.

Usage

dust_system_set_state(sys, state)

Arguments

sys A dust_system object

state A matrix or array of state. If ungrouped, the dimension order expected is state x
particle. If grouped the order is state x particle x group.

Value

Nothing, called for side effects only

dust_system_set_state_initial 19

dust_system_set_state_initial

Set system state to initial conditions

Description

Set system state from a system’s initial conditions. This may depend on the current time.

Usage

dust_system_set_state_initial(sys)

Arguments

sys A dust_system object

Value

Nothing, called for side effects only

dust_system_set_time Set system time

Description

Set time into the system. This updates the time to the provided value but does not affect the state.
You may want to call dust_system_set_state or dust_system_set_state_initial after calling this.

Usage

dust_system_set_time(sys, time)

Arguments

sys A dust_system object

time The time to set. Currently this must be an integer-like value, but in future we
will allow setting to any multiple of dt.

Value

Nothing, called for side effects only

20 dust_system_state

dust_system_simulate Simulate system

Description

Simulate a system over a series of times, returning an array of output. This output can be quite
large, so you may filter states according to some index.

Usage

dust_system_simulate(sys, times, index_state = NULL)

Arguments

sys A dust_system object

times A vector of times. They must be increasing, and the first time must be no less
than the current system time (as reported by dust_system_time). If your system
is discrete, then times must align to the dt used when creating the system.

index_state An optional index of states to extract. If given, then we subset the system state
on return. You can use this to return fewer system states than the system ran
with, to reorder states, or to name them on exit (names present on the index will
be copied into the rownames of the returned array).

Value

An array with 3 dimensions (state x particle x time) or 4 dimensions (state x particle x group x time)
for a grouped system.

dust_system_state Extract system state

Description

Extract system state

Usage

dust_system_state(
sys,
index_state = NULL,
index_particle = NULL,
index_group = NULL

)

dust_system_time 21

Arguments

sys A dust_system object

index_state Index of the state to fetch, if you would like only a subset

index_particle Index of the particle to fetch, if you would like a subset

index_group Index of the group to fetch, if you would like a subset

Value

An array of system state. If your system is ungrouped (i.e., n_groups = 1 and preserve_group_dimension
= FALSE), then this has two dimensions (state, particle). If grouped, this has three dimensions (state,
particle, group)

See Also

dust_system_set_state() for setting state and dust_system_set_state_initial() for setting
state to the system-specific initial conditions.

dust_system_time Fetch system time

Description

Fetch the current time from the system.

Usage

dust_system_time(sys)

Arguments

sys A dust_system object

Value

A single numeric value

See Also

dust_system_set_time

22 dust_unfilter_create

dust_system_update_pars

Update parameters

Description

Update parameters used by the system. This can be used to update a subset of parameters that do
not change the extent of the system, and will be potentially faster than creating a new system object.

Usage

dust_system_update_pars(sys, pars)

Arguments

sys A dust_system object

pars Parameters to set into the system.

Value

Nothing, called for side effects only

dust_unfilter_create Create an unfilter

Description

Create an "unfilter" object, which can be used to compute a deterministic likelihood following the
same algorithm as the particle filter, but limited to a single particle. The name for this method will
change in future.

Usage

dust_unfilter_create(
generator,
time_start,
data,
n_particles = 1,
n_groups = NULL,
dt = 1,
n_threads = 1,
index_state = NULL,
preserve_particle_dimension = FALSE,
preserve_group_dimension = FALSE

)

dust_unfilter_create 23

Arguments

generator A system generator object, with class dust_system_generator

time_start The start time for the simulation - this is typically before the first data point.
Must be an integer-like value.

data The data to fit to. This can be a data.frame, in which case it will be passed
into dust_filter_data for validation, or it can be a dust_filter_data-augmented
data.frame. The times for comparison will be taken from this, and time_start
must be no later than than the earliest time.

n_particles The number of particles to run. Typically this is 1, but you can run with more
than 1 if you want - currently they produce the same likelihood but if you provide
different initial conditions then you would see different likelihoods.

n_groups Optionally, the number of parameter groups

dt The time step for discrete time systems, defaults to 1 if not given. It is an error
to provide a non-NULL argument with continuous-time systems.

n_threads Integer, the number of threads to use in parallelisable calculations. See Details.

index_state An optional index of states to extract. If given, then we subset the system state
on return. You can use this to return fewer system states than the system ran
with, to reorder states, or to name them on exit (names present on the index will
be copied into the rownames of the returned array).

preserve_particle_dimension

Logical, indicating if output from the system should preserve the particle dimen-
sion in the case where a single particle is run. In the case where more than one
particle is run, this argument has no effect as the dimension is always preserved.

preserve_group_dimension

Logical, indicating if state and output from the system should preserve the group
dimension in the case where a single group is run. In the case where more
than one group is run, this argument has no effect as the dimension is always
preserved.

Value

A dust_likelihood object, which can be used with dust_likelihood_run

Index

cpp11::cpp_register(), 13

dust_compile, 2
dust_filter_create, 4, 5–11
dust_filter_data, 4, 5, 23
dust_likelihood_copy, 6
dust_likelihood_last_gradient, 6
dust_likelihood_last_history, 7, 8
dust_likelihood_last_state, 8
dust_likelihood_monty, 8
dust_likelihood_rng_state, 10
dust_likelihood_run, 5–7, 10, 11, 23
dust_likelihood_set_rng_state

(dust_likelihood_rng_state), 10
dust_ode_control, 12, 15, 16
dust_package, 13
dust_system_compare_data, 14, 15
dust_system_create, 2, 14
dust_system_internals, 16
dust_system_internals(), 12
dust_system_reorder, 15, 16
dust_system_rng_state, 17
dust_system_run_to_time, 15, 18
dust_system_set_rng_state

(dust_system_rng_state), 17
dust_system_set_state, 18, 19
dust_system_set_state(), 21
dust_system_set_state_initial, 15, 19,

19
dust_system_set_state_initial(), 21
dust_system_set_time, 19, 21
dust_system_simulate, 15, 20
dust_system_state, 14, 20
dust_system_time, 20, 21
dust_system_update_pars, 22
dust_unfilter_create, 5–11, 22

monty::monty_domain_expand, 9
monty::monty_model, 9
monty_model, 8

pkgbuild::compile_dll, 3

24

	dust_compile
	dust_filter_create
	dust_filter_data
	dust_likelihood_copy
	dust_likelihood_last_gradient
	dust_likelihood_last_history
	dust_likelihood_last_state
	dust_likelihood_monty
	dust_likelihood_rng_state
	dust_likelihood_run
	dust_ode_control
	dust_package
	dust_system_compare_data
	dust_system_create
	dust_system_internals
	dust_system_reorder
	dust_system_rng_state
	dust_system_run_to_time
	dust_system_set_state
	dust_system_set_state_initial
	dust_system_set_time
	dust_system_simulate
	dust_system_state
	dust_system_time
	dust_system_update_pars
	dust_unfilter_create
	Index

