
Package: hipercow (via r-universe)
July 3, 2024

Title High Performance Computing

Version 1.0.27

Description Set up cluster environments and jobs. Moo.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

URL https://github.com/mrc-ide/hipercow,

https://mrc-ide.github.io/hipercow

BugReports https://github.com/mrc-ide/hipercow/issues

Imports audio, cli, fs, ids, rlang, withr

Suggests bench, callr, conan2 (>= 1.9.95), dust, furrr, future, knitr,
logwatch, mockery, openssl, pkgdepends, prettyunits, redux,
rmarkdown, rrq, testthat (>= 3.0.0)

Config/testthat/edition 3

Remotes mrc-ide/conan2, mrc-ide/dust, mrc-ide/rrq, reside-ic/logwatch

VignetteBuilder knitr

Language en-GB

Repository https://mrc-ide.r-universe.dev

RemoteUrl https://github.com/mrc-ide/hipercow

RemoteRef main

RemoteSha c1f77abfb33e8aa9276090d7cf9f054c78fff981

Contents
hipercow_bundle_cancel . 3
hipercow_bundle_create . 3
hipercow_bundle_delete . 5
hipercow_bundle_list . 6

1

https://github.com/mrc-ide/hipercow
https://mrc-ide.github.io/hipercow
https://github.com/mrc-ide/hipercow/issues

2 Contents

hipercow_bundle_load . 6
hipercow_bundle_log_value . 7
hipercow_bundle_result . 8
hipercow_bundle_retry . 9
hipercow_bundle_status . 10
hipercow_bundle_wait . 11
hipercow_cluster_info . 12
hipercow_configuration . 13
hipercow_configure . 13
hipercow_driver . 14
hipercow_environment_create . 16
hipercow_envvars . 18
hipercow_hello . 19
hipercow_init . 19
hipercow_parallel . 20
hipercow_parallel_get_cores . 22
hipercow_parallel_set_cores . 22
hipercow_provision . 23
hipercow_provision_compare . 25
hipercow_provision_list . 26
hipercow_purge . 27
hipercow_resources . 29
hipercow_resources_validate . 31
hipercow_rrq_controller . 32
hipercow_rrq_workers_submit . 33
hipercow_unconfigure . 34
task_cancel . 35
task_create_bulk_call . 35
task_create_bulk_expr . 37
task_create_call . 39
task_create_explicit . 41
task_create_expr . 43
task_create_script . 45
task_eval . 46
task_info . 47
task_log_show . 48
task_result . 50
task_retry . 51
task_status . 52
task_submit . 54
task_wait . 54
windows_authenticate . 55
windows_check . 56
windows_generate_keypair . 57
windows_path . 57
windows_username . 58

Index 60

hipercow_bundle_cancel 3

hipercow_bundle_cancel

Cancel bundle tasks

Description

Cancel all tasks in a bundle. This wraps task_cancel for all the ids.

Usage

hipercow_bundle_cancel(bundle, follow = TRUE, root = NULL)

Arguments

bundle Either a hipercow_bundle object, or the name of a bundle.

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A logical vector the same length as id indicating if the task was cancelled. This will be FALSE if
the job was already completed, not running, etc.

Examples

cleanup <- hipercow_example_helper(runner = FALSE)

bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:5))
hipercow_bundle_cancel(bundle)
hipercow_bundle_status(bundle)

cleanup()

hipercow_bundle_create

Create task bundle

Description

Create a bundle of tasks. This is simply a collection of tasks that relate together in some way, and
we provide some helper functions for working with them that save you writing lots of loops. Each
bundle has a name, which will be randomly generated if you don’t provide one, and a set of task
ids.

4 hipercow_bundle_create

Usage

hipercow_bundle_create(
ids,
name = NULL,
validate = TRUE,
overwrite = TRUE,
root = NULL

)

Arguments

ids A character vector of task ids

name A string, the name for the bundle. If not given, then a random name is gener-
ated. Names can contain letters, numbers, underscores and hyphens, but cannot
contain other special characters.

validate Logical, indicating if we should check that the task ids exist. We always check
that the task ids are plausible.

overwrite Logical, indicating that we should overwrite any existing bundle with the same
name.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A task bundle object

Examples

cleanup <- hipercow_example_helper()

Two task that were created separately:
id1 <- task_create_expr(sqrt(1))
id2 <- task_create_expr(sqrt(2))

Combine these tasks together in a bundle:
bundle <- hipercow_bundle_create(c(id1, id2))

Now we can use bundle operations:
hipercow_bundle_status(bundle)
hipercow_bundle_wait(bundle)
hipercow_bundle_result(bundle)

cleanup()

hipercow_bundle_delete 5

hipercow_bundle_delete

Delete task bundles

Description

Delete one or more hipercow task bundles. Note that this does not delete the underlying tasks,
which is not yet supported.

Usage

hipercow_bundle_delete(name, root = NULL)

Arguments

name Character vectors of names to delete

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

Nothing, called for its side effect

Examples

cleanup <- hipercow_example_helper()

bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:5))
hipercow_bundle_list()

Retaining the ids, delete bundle
ids <- bundle$ids
hipercow_bundle_delete(bundle$name)
hipercow_bundle_list()

The tasks still exist:
task_status(ids)

cleanup()

6 hipercow_bundle_load

hipercow_bundle_list List existing bundles

Description

List existing bundles

Usage

hipercow_bundle_list(root = NULL)

Arguments

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A data.frame with columns name and time, ordered by time (most recent first)

Examples

cleanup <- hipercow_example_helper()

With no bundles present
hipercow_bundle_list()

With a bundle
bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:5))
hipercow_bundle_list()

cleanup()

hipercow_bundle_load Load existing bundle

Description

Load an existing saved bundle by name. This is intended for where you have created a long-running
bundle and since closed down your session. See hipercow_bundle_list for finding names of bundles.

Usage

hipercow_bundle_load(name, root = NULL)

Arguments

name Name of the bundle to load
root A hipercow root, or path to it. If NULL we search up your directory tree.

hipercow_bundle_log_value 7

Value

A hipercow_bundle object

Examples

cleanup <- hipercow_example_helper()

bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:5))
name <- bundle$name

Delete the bundle object; the bundle exists still in hipercow's store.
rm(bundle)

With the name we can load the bundle and fetch its status
bundle <- hipercow_bundle_load(name)
hipercow_bundle_status(bundle)

In fact, you can use just the name if you prefer:
hipercow_bundle_status(name)

cleanup()

hipercow_bundle_log_value

Fetch bundle logs

Description

Fetch logs from tasks in a bundle.

Usage

hipercow_bundle_log_value(bundle, outer = FALSE, follow = TRUE, root = NULL)

Arguments

bundle Either a hipercow_bundle object, or the name of a bundle.

outer Logical, indicating if we should request the "outer" logs; these are logs from the
underlying HPC software before it hands off to hipercow.

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A list with each element being the logs for the corresponding element in the bundle.

8 hipercow_bundle_result

Examples

cleanup <- hipercow_example_helper(with_logging = TRUE)
bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:2))
hipercow_bundle_wait(bundle)
hipercow_bundle_log_value(bundle)

cleanup()

hipercow_bundle_result

Fetch bundle results

Description

Fetch all bundle results

Usage

hipercow_bundle_result(bundle, follow = TRUE, root = NULL)

Arguments

bundle Either a hipercow_bundle object, or the name of a bundle.

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

An unnamed list, with each element being the result for each a task in the bundle, in the same order.

Examples

cleanup <- hipercow_example_helper()
bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:5))
hipercow_bundle_wait(bundle)
hipercow_bundle_result(bundle)

cleanup()

hipercow_bundle_retry 9

hipercow_bundle_retry Retry task bundle

Description

Retry tasks in a bundle. This has slightly different semantics to task_retry(), which errors if a
retry is not possible. Here, we anticipate that much of the time you will be interested in retrying
some fraction of your bundle and so don’t need to wait until all tasks have finished in order to retry
failed tasks.

Usage

hipercow_bundle_retry(bundle, if_status_in = NULL, driver = NULL, root = NULL)

Arguments

bundle Either a hipercow_bundle object, or the name of a bundle.

if_status_in Optionally, a character vector of task statuses for which we should retry tasks.
For example, pass if_status_in = c("cancelled", "failure") to retry can-
celled and failed tasks. Can only be terminal statuses (cancelled, failure,
success).

driver Name of the driver to use to submit the task. The default (NULL) depends on your
configured drivers; if you have no drivers configured no submission happens (or
indeed is possible). If you have exactly one driver configured we’ll submit your
task with it. If you have more than one driver configured, then we will error,
though in future versions we may fall back on a default driver if you have one
configured. If you pass FALSE here, submission is prevented even if you have no
driver configured.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

Invisibly, a logical vector, indicating which of the tasks within the bundle were retried. This means
that it’s not immediately obvious how you can get the new id back from the tasks, but typically that
is unimportant, as all bundle functions follow retries by default.

Examples

cleanup <- hipercow_example_helper()
bundle <- task_create_bulk_expr(rnorm(1, x), data.frame(x = 1:5))
hipercow_bundle_wait(bundle)

retried <- hipercow_bundle_retry(bundle)
retried
hipercow_bundle_wait(bundle)
hipercow_bundle_result(bundle, follow = FALSE)
hipercow_bundle_result(bundle, follow = TRUE)

10 hipercow_bundle_status

cleanup()

hipercow_bundle_status

Bundle status

Description

Fetch status for all tasks in a bundle.

Usage

hipercow_bundle_status(bundle, reduce = FALSE, follow = TRUE, root = NULL)

Arguments

bundle Either a hipercow_bundle object, or the name of a bundle.

reduce Reduce the status across all tasks in the bundle. This means we return a single
value with the "worst" status across the bundle. We only return success if all
tasks have succeeded, and will return failed if any task has failed.

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A character vector the same length as the number of tasks in the bundle, or length 1 if reduce is
TRUE.

Examples

cleanup <- hipercow_example_helper()
bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:5))
Immediately after submission, tasks may not all be complete so
we may get a mix of statuses. In that case the reduced status
will be "submitted" or "running", even though some tasks may be
"success"
hipercow_bundle_status(bundle)
hipercow_bundle_status(bundle, reduce = TRUE)

After completion all tasks have status "success", as does the
reduction.
hipercow_bundle_wait(bundle)
hipercow_bundle_status(bundle)
hipercow_bundle_status(bundle, reduce = TRUE)

cleanup()

hipercow_bundle_wait 11

hipercow_bundle_wait Wait for a bundle to complete

Description

Wait for tasks in a bundle to complete. This is the generalisation of task_wait for a bundle.

Usage

hipercow_bundle_wait(
bundle,
timeout = NULL,
poll = 1,
fail_early = TRUE,
progress = NULL,
follow = TRUE,
root = NULL

)

Arguments

bundle Either a hipercow_bundle object, or the name of a bundle.

timeout The time to wait for the task to complete. The default is to wait forever.

poll Time, in seconds, used to throttle calls to the status function. The default is 1
second

fail_early Logical, indicating if we should fail as soon as the first task has failed. In this
case, the other running tasks continue running, but we return and indicate that
the final result will not succeed. If fail_early = FALSE we keep running until
all tasks have passed or failed, even though we know we will return FALSE; but
upon return hipercow_bundle_result() can be called and all results/errors
returned.

progress Logical value, indicating if a progress spinner should be used. The default NULL
uses the option hipercow.progress, and if unset displays a progress bar in an
interactive session.

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A scalar logical value; TRUE if all tasks complete successfully and FALSE otherwise

12 hipercow_cluster_info

Examples

cleanup <- hipercow_example_helper()

bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:5))
hipercow_bundle_wait(bundle)
hipercow_bundle_status(bundle)

cleanup()

hipercow_cluster_info Describe cluster

Description

Describe information about the cluster. This is (naturally) very dependent on the cluster but some
details of the value are reliable; see Value for details.

Usage

hipercow_cluster_info(driver = NULL, root = NULL)

Arguments

driver The driver to use, which determines the cluster to fetch information from (de-
pending on your configuration). If no driver is configured, an error will be
thrown.

root Hipercow root, usually best NULL

Value

A list describing the cluster. The details depend on the driver, and are subject to change. We expect
to see elements:

• resources: Describes the computational resources on the cluster, which is used by hiper-
cow_resources_validate. Currently this is a simple list with elements max_ram (max RAM
available, in GB), max_cores (max number of cores you can request), queues (character vec-
tor of available queues), nodes (character vector of available nodes), default_queue (the
default queue). These details are subject to change but the contents should always be informa-
tive and fairly self explanatory.

• redis_url: The URL of the redis server to communicate with from outside of the cluster (i.e.,
from your computer), in a form suitable for use with redux::hiredis

• r_versions: A vector of R versions, as numeric_vector objects

Examples

cleanup <- hipercow_example_helper()
hipercow_cluster_info()
cleanup()

hipercow_configuration 13

hipercow_configuration

Report on hipercow configuration

Description

Report on your hipercow configuration. We will always want you to post this along side any prob-
lems; it has lots of useful information in it that will help us see how your set up is configured.

Usage

hipercow_configuration(show = TRUE, root = NULL)

Arguments

show Display the configuration to the screen

root Hipercow root, usually best NULL

Value

A list with a machine readable form of this information, invisibly.

Examples

cleanup <- hipercow_example_helper()
hipercow_configuration()

If you have saved additional environments, they will be listed here:
file.create("functions.R")
hipercow_environment_create(

name = "other",
packages = "knitr",
sources = "functions.R")

hipercow_configuration()

cleanup()

hipercow_configure Configure your hipercow root

Description

Configure your hipercow root. hipercow_configure creates the configuration and hipercow_configuration
looks it up

14 hipercow_driver

Usage

hipercow_configure(driver, ..., root = NULL)

Arguments

driver The hipercow driver; probably you want this to be "windows" as that is all we
support at the moment!

... Arguments passed to your driver; see Details for information about what is sup-
ported (this varies by driver).

root Hipercow root, usually best NULL

Windows

Options supported by the windows driver:

• shares: Information about shares (additional to the one mounted as your working directory)
that should be made available to the cluster job. The use case here is where you need access
to some files that are present on a shared drive and you will access these by absolute path (say
M:/gis/shapefiles/) from your tasks. You can provide a share as a windows_path object,
or a list of such objects. You will not typically need to use this option.

• r_version: Control the R version used on the cluster. Typically hipercow will choose a
version close to the one you are using to submit jobs, of the set available on the cluster. You
can use this option to choose a specific version (e.g., pass "4.3.0" to select exactly that version).

See vignette("details") for more information about these options.

See Also

hipercow_unconfigure, which removes a driver

Examples

hipercow_configure("windows", r_version = "4.3.0")

hipercow_driver Create a driver

Description

Create a new hipercow driver; this is intended to be used from other packages, and rarely called
directly. If you are trying to run tasks on a cluster you do not need to call this!

hipercow_driver 15

Usage

hipercow_driver(
configure,
submit,
status,
info,
log,
result,
cancel,
provision_run,
provision_list,
provision_compare,
keypair,
check_hello,
cluster_info,
default_envvars = NULL

)

Arguments

configure Function used to set core configuration for the driver. This function will be
called from the hipercow root directory (so getwd() will report the correct path).
It can take any arguments, do any calculation and then must return any R object
that can be serialised. The resulting configuration will be passed in as config
to other driver functions.

submit Submit a task to a cluster. This is run after the task is created (either automati-
cally or manually) and takes as arguments the task id, the configuration, the path
to the root.

status Fetch a task status. Takes a vector of ids and returns a vector of the same length
of statuses.

info Fetch task info for a single task. May take longer than status and expected to
retrieve the true status from the scheduler.

log Fetch the task log. Takes a single task id and an integer (the number of lines
already known) and returns a character vector of new logs. Return NULL (and
not a zero length character vector) if a log is not available.

result Fetch a task result. If needed, copies the result file into the current hipercow
root. Assume that a result is available (i.e., we’ve already checked that the task
status is terminal)

cancel Cancel one or more tasks. Takes a vector of task ids, and requests that these
tasks are cancelled, returning a list with elements cancelled: a logical vector
the same length indicating if cancellation was successful, and time_started:
the time that the task was started, or NA if the task was not yet started.

provision_run Provision a library. Works with conan, and must accept args, config, and
path_root. The args should be injected into conan2::conan_configure. It
is expected this function will trigger running conan to provision a library. The
return value is ignored, an error is thrown if the installation fails.

16 hipercow_environment_create

provision_list List previous installations. Takes args and if non-NULL injects into conan2::conan_configure
(as for provision_run) in order to build a hash. Runs conan2::conan_list
returning its value.

provision_compare

Test if a library is current. It is expected that this will call conan2::conan_compare

keypair Return a keypair as a list with elements pub and key; the public key as a string
and the private key as a path that will be accessible when the cluster runs, but
with permissions that are open only to the user who submitted the task.

check_hello Run any preflight checks before launching a hello world task. Return a validated
resources list.

cluster_info Return information about a particular cluster: its maximum core count, maxi-
mum memory, node list and queue names, used for validating hipercow_resources
against that cluster.

default_envvars

Driver-specific default environment variables. Drivers can use this to add envi-
ronment variables that have a higher precedence than the hipercow defaults, but
lower precedence than the hipercow.default_envvars option or the envvars
argument to a task.

hipercow_environment_create

Manage environments

Description

Create, update, list, view and delete environments.

Usage

hipercow_environment_create(
name = "default",
packages = NULL,
sources = NULL,
globals = NULL,
overwrite = TRUE,
check = TRUE,
root = NULL

)

hipercow_environment_list(root = NULL)

hipercow_environment_delete(name = "default", root = NULL)

hipercow_environment_show(name = "default", root = NULL)

hipercow_environment_exists(name = "default", root = NULL)

hipercow_environment_create 17

Arguments

name Name of the environment. The name default is special; this is the environment
that will be used by default (hence the name!). Environment names can contain
letters, numbers, hyphens and underscores.

packages Packages to be attached before starting a task. These will be loaded with library()
before the sources are sourced. If you need to attach a package after a script
for some reason, just call library yourself within one of your source files.

sources Files to source before starting a task. These will be sourced into the global (or
execution) environment of the task. The paths must be relative to the hipercow
root, not the working directory.

globals Names of global objects that we can assume exist within this environment. This
might include function definitions or large data objects. The special value TRUE
triggers automatic detection of objects within your environment (this takes a
few seconds and requires that the environment is constructable on your local
machine too, so is not currently enabled by default).

overwrite On environment creation, replace an environment with the same name.

check Logical, indicating if we should check the source files for issues. Pass FALSE
here if you need to bypass these checks but beware the consequences that may
await you.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

Nothing, all are called for their side effects.

Examples

cleanup <- hipercow_example_helper()

Suppose you have a file with some functions you want to use in
your task:
writeLines("simulation <- function(n) cumsum(rnorm(n))", "myfuns.R")

Update the default environment to include these functions (or in
this example, just this one function)
hipercow_environment_create(sources = "myfuns.R")

You can now use this function in your tasks:
id <- task_create_expr(simulation(5))
task_wait(id)
task_result(id)

cleanup()

18 hipercow_envvars

hipercow_envvars Environment variables

Description

Create environment variables for use with a hipercow task.

Usage

hipercow_envvars(..., secret = FALSE)

Arguments

... <dynamic-dots> Named environment variable. If unnamed, it is assumed to
refer to an environment variable that exists. Use an NA value to unset an envi-
ronment variable.

secret Are these environment variables secret? If so we will encrypt them at saving
and decrypt on use.

Value

A list with class hipercow_envvars which should not be modified.

Examples

Declare environment variables as key-value pairs:
hipercow_envvars("MY_ENVVAR1" = "value1", "MY_ENVVAR2" = "value2")

If an environment variable already exists in your environment
and you want to duplicate this into a task, you can use this
shorthand:
Sys.setenv(HIPERCOW_EXAMPLE_ENVVAR = "moo") # suppose this exists already
hipercow_envvars("HIPERCOW_EXAMPLE_ENVVAR")
hipercow_envvars("HIPERCOW_EXAMPLE_ENVVAR", ANOTHER_ENVVAR = "value")

Secret envvars are still printed (at the moment at least) but
once passed into a task they will be encrypted at rest.
hipercow_envvars("MY_SECRET" = "password", secret = TRUE)

Secret and public environment variables should be created
separately and concatenated together:
env_public <- hipercow_envvars("HIPERCOW_EXAMPLE_ENVVAR")
env_secret <- hipercow_envvars("MY_PASSWORD" = "secret", secret = TRUE)
c(env_public, env_secret)

Cleanup
Sys.unsetenv("HIPERCOW_EXAMPLE_ENVVAR")

hipercow_hello 19

hipercow_hello Hello world

Description

Hello world in hipercow. This function sends a tiny test task through the whole system to confirm
that everything is configured correctly.

Usage

hipercow_hello(progress = NULL, timeout = NULL, driver = NULL)

Arguments

progress Logical value, indicating if a progress spinner should be used. The default NULL
uses the option hipercow.progress, and if unset displays a progress bar in an
interactive session.

timeout The time to wait for the task to complete. The default is to wait forever.

driver The driver to use to send the test task. This can be omitted where you have
exactly one driver, but we error if not given when you have more than one driver,
or if you have not configured any drivers.

Value

The string "Moo", direct from your cluster.

Examples

cleanup <- hipercow_example_helper()
hipercow_hello()

cleanup()

hipercow_init Create a hipercow root

Description

Create a hipercow root. This marks the directory where your task information will be saved, along
with a local copy of your R packages (a "library" for the cluster). Immediately after running this
the first time, you probably want to run hipercow_configure() in order to control how we set up
your projects network paths and R version.

Usage

hipercow_init(root = ".", driver = NULL, ...)

20 hipercow_parallel

Arguments

root The path to the root, defaulting the current directory.

driver Optionally, the name of a driver to configure

... Arguments passed through to hipercow_configure if driver is non-NULL.

Value

Invisibly, the root object

Examples

Create an empty root
path <- withr::local_tempfile()
hipercow_init(path)

hipercow_parallel Specify parallel use of cores

Description

Set parallel options. Having requested more than one core using hipercow_resources, here hipercow
can start up a local cluster on the node you are running on, using either the future or parallel
package.

Usage

hipercow_parallel(
method = NULL,
cores_per_process = 1L,
environment = NULL,
use_rrq = FALSE

)

Arguments

method The parallel method that hipercow will prepare. Three options are available: the
future package, the parallel package, or NULL, the default, will do nothing.
See the details for examples.

cores_per_process

The number of cores allocated to each process when launching a local cluster
using one of the parallel methods. By default, this will be 1. See details.

environment The name of the environment to load into your parallel workers. The default is to
use the environment that you submit your task with (which defaults to default),
which means that each worker gets the same environment as your main process.
This is often what you want, but can mean that you load too much into each
worker and incur a speed or memory cost. In that case you may want to create a

hipercow_parallel 21

new environment (hipercow_environment_create) that contains fewer packages
or sources fewer functions and specify that here. If you want to suppress loading
any packages into the workers you can use the empty environment, which always
exists.

use_rrq Logical, indicating if you intend to use rrq-based workers from your tasks, in
which case we will set a default controller. Enabling this requires that you have
configured a rrq controller via hipercow_rrq_controller() before submitting
the task (we check this before submission) and that you have submitted some
workers via hipercow_rrq_workers_submit() (we don’t check this because
you will want them running at the time that your task starts, so you may want
to launch them later depending on your workflow. We’ll document this more in
vignete("rrq").

Details

Here, hipercow automatically does some setup work for the supported methods, to initialise a lo-
cal cluster of processes that can be used with future_map or clusterApply, depending on your
method.

By default, hipercow initialises a cluster with the same number of processes as the number of cores
you requested using hipercow_resources. Each process here would be use a single core.

You can also call hipercow_parallel with cores_per_process, to make hipercow launch as
many processes as it can with each process having the number of cores you request, with the total
cores being at most what you requested with hipercow_resources.

For example, you could request 32 cores with hipercow_resources, and then call hipercow_parallel
with cores_per_process = 4, and hipercow will create a local cluster with 8 processes, each of
which reporting 4 cores if that process calls hipercow_parallel_get_cores.

If you did the same with cores_per_process = 5, hipercow would create 6 local processes, each
reporting 5 cores, and two cores would be effectively unallocated.

Here are some brief examples; see vignette("parallel") for more details. In each example, we
are looking up the process id (to show that different processes are being launched), and asking each
process how many cores it should be using.

For using the future package:

resources <- hipercow_resources(cores = 4)
id <- task_create_expr(

furrr::future_map(1:4,
~c(Sys.getpid(), hipercow_parallel_get_cores()),

parallel = hipercow_parallel("future"),
resources = resources)

where furrr must be provisioned using hipercow_provision. Here is an equivalent example with
parallel:

resources <- hipercow_resources(cores = 4)
id <- task_create_expr(

22 hipercow_parallel_set_cores

parallel::clusterApply(NULL, 1:4, function(x)
c(Sys.getpid(), hipercow_parallel_get_cores()),

parallel = hipercow_parallel("parallel"),
resources = resources)

Value

A list containing your parallel configuration.

hipercow_parallel_get_cores

Get number of cores

Description

Lookup number of cores allocated to the task

Usage

hipercow_parallel_get_cores()

Value

The number of cores a cluster has allocated to your task. This will be less than or equal to the
number of cores on the cluster node running your task.

hipercow_parallel_set_cores

Set various environment variables that report the number of cores
available for execution.

Description

Sets the environment variables MC_CORES, OMP_NUM_THREADS, OMP_THREAD_LIMIT, R_DATATABLE_NUM_THREADS
and HIPERCOW_CORES to the given number of cores. This is used to help various thread-capable
packages use the correct number of cores. You can also call it yourself if you know specifically how
many cores you want to be available to code that looks up these environment variables.

Usage

hipercow_parallel_set_cores(cores, envir = NULL)

Arguments

cores Number of cores to be used.
envir Environment in which the variables will be set to limit their lifetime. This should

not need setting in general, but see withr::local_envvar for example use.

hipercow_provision 23

hipercow_provision Provision cluster library

Description

Provision a library. This runs a small task on the cluster to set up your packages. If you have
changed your R version you will need to rerun this. See vignette("packages") for much more
on this process.

Usage

hipercow_provision(
method = NULL,
...,
driver = NULL,
environment = "default",
check_running_tasks = TRUE,
root = NULL

)

Arguments

method The provisioning method to use, defaulting to NULL, which indicates we should
try and detect the best provisioning mechanism for you; this should typically
work well unless you are manually adding packages into your library (see De-
tails). If given, must be one of auto, pkgdepends, script or renv; each of
these are described in the Details and in vignette("packages").

... Arguments passed through to conan. See Details.

driver The name of the driver to use, or you can leave blank if only one is configured
(this will be typical).

environment The name of the environment to provision (see hipercow_environment_create
for details).

check_running_tasks

Logical, indicating if we should check that no tasks are running before starting
installation. Generally, installing packages while tasks are running is harmful
as you may get unexpected results, a task may start while a package is in an
inconsistent state, and on windows you may get a corrupted library if a package
is upgraded while it is loaded. You can disable this check by passing FALSE. Not
all drivers respond to this argument, but the windows driver does.

root The hipercow root

Details

Our hope is that that most of the time you will not need to pass any options through ..., and that
most of the time hipercow will do the right thing. Please let us know if that is not the case and
you’re having to routinely add arguments here.

24 hipercow_provision

Value

Nothing

Manually adding packages to an installation

One case where we do expect that you will pass options through to hipercow_provision is where
you are manually adding packages to an existing library. The usage here will typically look like:

hipercow_provision("pkgdepends", refs = c("pkg1", "pkg2"))

where pkg1 and pkg2 are names of packages or pkgdepends references (e.g., username/repo for a
GitHub package; see vignette("packages") for details).

Supported methods and options

There are four possible methods: pkgdepends, auto, script and renv.

The canonical source of documentation for all of these approaches is conan2::conan_configure.

pkgdepends:
The simplest method to understand, and probably most similar to the approach in didehpc. This
method installs packages from a list in pkgdepends.txt in your hipercow root, or via a vec-
tor of provided package references. Uses pkgdepends for the actual dependency resolution and
installation.
Supported options (passed via ...)

• refs: A character vector of package references to override pkgdepends.txt

• policy: the policy argument to pkgdepends::new_pkg_installation_proposal (accepts
lazy and upgrade)

auto:
Uses pkgdepends internally but tries to do everything automatically based on your declared en-
vironments (see hipercow_environment_create and vignette("hipercow")) and the instal-
lation information recorded in the locally installed versions of the required packages.
This is experimental and we’d love to know how it works for you.
No options are supported, the idea is it’s automatic :)

script:
Runs a script (by default provision.R) on the cluster to install things however you want. Very
flexible but you’re on your own mostly. The intended use case of this option is where pkgdepends
fails to resolve your dependencies properly and you need to install things manually. The remotes
package will be pre-installed for you to use within your script.
Your script will run on a special build queue, which will run even when the cluster is very busy.
However, this is restricted in other ways, allowing a maximum of 30 minutes and disallowing
parallel running.
Supports one option:

• script: The path for the script to run, defaulting to provision.R

https://pkgdepends.r-lib.org

hipercow_provision_compare 25

renv:
Uses renv to recreate your renv environment. You must be using renv locally for this to work,
and at present your renv project root must be the same as your hipercow root.
No options are currently supported, but we may pass some renv options in the future; if you need
more flexibility here please let us know.

Examples

cleanup <- hipercow_example_helper()
writeLines(c("knitr", "data.table"), "pkgdepends.txt")
hipercow_provision()
hipercow_provision_list()

cleanup()

hipercow_provision_compare

Compare installations

Description

Compare installations performed into your libraries by conan.

Usage

hipercow_provision_compare(curr = 0, prev = -1, driver = NULL, root = NULL)

Arguments

curr The previous installation to compare against. Can be a name (see hipercow_provision_list
to get names), a negative number where -n indicates "n installations ago" or a
positive number where n indicates "the nth installation". The default value of 0
corresponds to the current installation.

prev The previous installation to compare against. Can be a name (see hipercow_provision_list
to get names), a negative number where -n indicates "n installations ago" or a
positive number where n indicates "the nth installation". The default of -1 in-
dicates the previous installation. Must refer to an installation before curr. Use
NULL or -Inf if you want to compare against the empty installation.

driver The name of the driver to use, or you can leave blank if only one is configured
(this will be typical).

root The hipercow root

Value

An object of class conan_compare, which can be printed nicely.

https://rstudio.github.io/renv

26 hipercow_provision_list

Examples

cleanup <- hipercow_example_helper()
hipercow_provision("pkgdepends", refs = "knitr")
hipercow_provision("pkgdepends", refs = "data.table")
hipercow_provision_compare()

cleanup()

hipercow_provision_list

List installations

Description

List previous successful installations of this hipercow root.

Usage

hipercow_provision_list(driver = NULL, root = NULL)

hipercow_provision_check(
method = NULL,
...,
driver = NULL,
environment = "default",
root = NULL

)

Arguments

driver The name of the driver to use, or you can leave blank if only one is configured
(this will be typical).

root The hipercow root

method The provisioning method to use, defaulting to NULL, which indicates we should
try and detect the best provisioning mechanism for you; this should typically
work well unless you are manually adding packages into your library (see De-
tails). If given, must be one of auto, pkgdepends, script or renv; each of
these are described in the Details and in vignette("packages").

... Arguments passed through to conan. See Details.

environment The name of the environment to provision (see hipercow_environment_create
for details).

hipercow_purge 27

Value

A data.frame with columns:

• name: the name of the installation. This might be useful with conan_compare

• time: the time the installation was started

• hash: the installation hash

• method: the method used for the installation

• args: the arguments to the installation (as a list column)

• current: if using hipercow_provision_check, does this installation match the arguments
provided?

This object also has class conan_list so that it prints nicely, but you can drop this with as.data.frame.

Examples

cleanup <- hipercow_example_helper()
writeLines("data.table", "pkgdepends.txt")

Before any installation has happened:
hipercow_provision_list()
hipercow_provision_check()

After installation:
hipercow_provision()
hipercow_provision_list()
hipercow_provision_check()

After a different installation:
hipercow_provision("pkgdepends", refs = "knitr")
hipercow_provision_list()
hipercow_provision_check()

cleanup()

hipercow_purge Purge tasks

Description

Purge (delete) hipercow tasks. This is a destructive operation that cannot be undone and can have
unintended consequences! However, if you are running short of space and don’t want to just delete
everything and start again (which is our general recommendation), this function provides a mecha-
nism for cleaning up tasks that you no longer need.

28 hipercow_purge

Usage

hipercow_purge(
task_ids = NULL,
finished_before = NULL,
in_bundle = NULL,
with_status = NULL,
root = NULL

)

Arguments

task_ids A character vector of task identifiers. Typically if you provide this you will not
provide any other filters.

finished_before

A date, time, or difftime object representing the time or time ago that a task
finished (here, the job might have finished for any reason; successfully or un-
successfully unless you also provide the with_status argument). Everything
prior to this will be deleted.

in_bundle A character vector of bundle names. Wild cards are supported using shell (glob)
syntax, rather than regular expression syntax. So use data_* to match all bun-
dles that start with data_ (see utils::glob2rx for details). It is an error if no
bundles are matched, but not an error if any individual pattern does not match.

with_status A character vector of statuses to match. We only purge tasks that match these
statuses. Valid statuses to use are created, success, failure and cancelled
(note you cannot select tasks with status of submitted or running; use task_cancel
for these first).

root A hipercow root, or path to it. If NULL we search up your directory tree.

Details

Most of the arguments describe filters over your tasks. We delete the intersection of these filters
(not the union), and you must provide at least one filter. So to delete all tasks that were created more
than a week ago you could write:

hipercow_purge(created_before = as.difftime(1, units = "weeks"))

but to restrict this to only tasks that have also failed you could write

hipercow_purge(created_before = "1 week", with_status = "failed")

Value

A character vector of deleted identifiers, invisibly.

hipercow_resources 29

Consequences of deletion

A non-exhaustive list:

• If you delete a task that is part of a task_retry chain, then all tasks (both upstream and down-
stream in that chain) are deleted

• Once we support task dependencies (mrc-4797), deleting tasks will mark any not-yet-run de-
pendent task as impossible, or perhaps delete it too, or prevent you from deleting the task;
we’ve not decided yet

• You may have a bundle that references a task that you delete, in which case the bundle will
not behave as expected. As a result we delete all bundles that reference a deleted task

• Deleted bundles or deleted tasks that you hold identifiers to before deletion will not behave as
expected, with tasks reported missing. Restarting your session is probably the safest thing to
do after purging.

• We can’t prevent race conditions, so if you are purging tasks at the same time you are also
retrying tasks that you will purge, you’ll create tasks that we might not want to allow, and
these tasks will fail in peculiar ways.

Examples

cleanup <- hipercow_example_helper()

Here are some tasks that have finished running:
bundle <- task_create_bulk_expr(sqrt(x), data.frame(x = 1:5),

bundle_name = "mybundle")
hipercow_bundle_wait(bundle)

Purge all tasks contained in any bundle starting with "my":
hipercow_purge(in_bundle = "my*")

cleanup()

hipercow_resources Hipercow Resources

Description

Specify what resources a task requires to run. This creates a validated list of resources that can be
passed in as the resources argument to task_create_expr or other task creation functions.

Usage

hipercow_resources(
cores = 1L,
exclusive = FALSE,
max_runtime = NULL,
hold_until = NULL,
memory_per_node = NULL,

30 hipercow_resources

memory_per_process = NULL,
requested_nodes = NULL,
priority = NULL,
queue = NULL

)

Arguments

cores The number of cores your task requires. This is 1 by default. Setting to Inf will
request any single node single node, however many cores that node has has.

exclusive Set this to TRUE to ensure no other tasks will be concurrently run on the node
while it runs your task. This is done implicitly if cores is Inf. This might be
useful for a single core task that uses a very large amount of memory, or for
multiple tasks that for some reason cannot co-exist on the same node.

max_runtime Set this to specify a time limit for running your job. Acceptable formats are
either an integer number of minutes, or strings specifying any combination of
hours (h), days (d) and minutes (m). Example valid values: 60, "1h30m", "5h",
or "40d".

hold_until Specify your task should wait in the queue until a certain time, or for a cer-
tain period. For the former, this can be a POSIXt (i.e., a date and time in the
future), a Date (midnight on a day in the future), the special strings "tonight"
(7pm), "midnight", or "weekend" (midnight Saturday morning). To delay for a
period, you can specify an integer number of minutes, or strings specifying any
combination of hours (h), days (d) and minutes (m). Example valid values: 60,
"1h30m", "5h", or "3d".

memory_per_node

Specify your task can only run on a node with at least the specified memory.
This is an integer assumed to be gigabytes, or a string in gigabytes or terabytes
written as "64G" or "1T" for example.

memory_per_process

If you can provide an estimate of how much RAM your task requires, then the
cluster can ensure the total memory required by running multiple tasks on a node
does not exceed how much memory the node has. Specify this as an integer
number of gigabytes, or characters such as "10G"

requested_nodes

If you have been in touch with us or DIDE IT, and you need to run your task on
a selection of named compute nodes, then specify this here as a vector of strings
for the node names.

priority If the tasks you are launching are low priority, you can allow other queuing
tasks to jump over them, by setting the priority to to low; otherwise, the default
is normal. These are the only acceptable values.

queue Specify a particular queue to submit your tasks to. This is in development as
we decide over time what queues we best need for DIDE’s common workflows.
See the Details for more information, and the queues available on each cluster.

hipercow_resources_validate 31

Value

If the function succeeds, it returns a hipercow_resources list of parameters which is syntactically
valid, although not yet validated against a particular driver to see if the resources can be satisfied.
If the function fails, it will return information about why the arguments could not be validated. Do
not modify the return value.

Windows cluster (wpia-hn)

• Cores at present must be between 1 and 32

• Memory per node (or per task) can be 512Gb at most.

• The available queues are AllNodes and Training

• The node names are between wpia-001 and wpia-070, excluding 41, 42, 49 and 50.

Linux cluster (hermod)

Coming Soon.

Examples

The default set of resources
hipercow_resources()

A more complex case:
hipercow_resources(

cores = 32,
exclusive = TRUE,
priority = "low")

(remember that in order to change resources you would pass the
return value here into the "resources" argument of
task_create_expr() or similar)

hipercow_resources_validate

Validate a hipercow_resources list for a driver.

Description

Query a driver to find information about the cluster, and then validate a hipercow_resources list
against that driver to see if the resources requested could be satisfied.

Usage

hipercow_resources_validate(resources, driver = NULL, root = NULL)

32 hipercow_rrq_controller

Arguments

resources A hipercow_resources list returned by hipercow_resources, or NULL
driver The name of the driver to use, or you can leave blank if only one is configured

(this will be typical).
root The hipercow root

Value

TRUE if the resources are compatible with this driver.

Examples

cleanup <- hipercow_example_helper()
hipercow_resources_validate(hipercow_resources(cores = 1))

This example does not allow more than one core
tryCatch(

hipercow_resources_validate(hipercow_resources(cores = 32)),
error = identity)

cleanup()

hipercow_rrq_controller

Create an rrq controller

Description

Create an rrq controller for your queue, and set it as the default controller. Use this to interact with
workers created with hipercow_rrq_workers_submit(). Proper docs forthcoming, all interfaces
are subject to some change.

Usage

hipercow_rrq_controller(..., set_as_default = TRUE, driver = NULL, root = NULL)

Arguments

... Additional arguments passed through to rrq::rrq_controller(); currently
this is follow and timeout_task_wait.

set_as_default Set the rrq controller to be the default; this is usually what you want.
driver Name of the driver to use. The default (NULL) depends on your configured

drivers; if you have no drivers configured we will error as we lack informa-
tion required to proceed. If you have exactly one driver configured we’ll submit
your task with it. If you have more than one driver configured, then we will
error, though in future versions we may fall back on a default driver if you have
one configured.

root A hipercow root, or path to it. If NULL we search up your directory tree.

hipercow_rrq_workers_submit 33

Value

An rrq::rrq_controller object.

hipercow_rrq_workers_submit

Submit rrq workers

Description

Submit workers to the cluster, use this in conjunction with hipercow_rrq_controller. A worker may
sit on a single core or a whole node depending on how you set up resources. We use the rrq envi-
ronment if it exists (hipercow_environment_create) otherwise we’ll use the default environment.

Usage

hipercow_rrq_workers_submit(
n,
driver = NULL,
resources = NULL,
envvars = NULL,
parallel = NULL,
timeout = NULL,
progress = NULL,
root = NULL

)

Arguments

n The number of workers to submit. This is the only required argument.
driver Name of the driver to use. The default (NULL) depends on your configured

drivers; if you have no drivers configured we will error as we lack informa-
tion required to proceed. If you have exactly one driver configured we’ll submit
your task with it. If you have more than one driver configured, then we will
error, though in future versions we may fall back on a default driver if you have
one configured.

resources A list generated by hipercow_resources giving the cluster resource requirements
to run your task.

envvars Environment variables as generated by hipercow_envvars, which you might use
to control your task.

parallel Parallel configuration as generated by hipercow_parallel, which defines which
method, if any, will be used to initialise your worker for parallel execution
(which means you have to think about parallelism at three levels at least, a dia-
gram may help here).

timeout Time to wait for workers to appear.
progress Should we display a progress bar?
root A hipercow root, or path to it. If NULL we search up your directory tree.

34 hipercow_unconfigure

Value

A data.frame with information about the launch, with columns:

• queue_id: the rrq queue id (same for all workers)

• worker_id: the rrq worker identifier

• task_id: the hipercow task identifier

• bundle_name: the hipercow bundle name (same for all workers)

hipercow_unconfigure Remove a driver from a hipercow configuration

Description

Remove a driver configured by hipercow_configure. This will not affect tasks already submitted
with this driver, but will prevent any future tasks being submitted with it.

Usage

hipercow_unconfigure(driver, root = NULL)

Arguments

driver The name of the driver to remove

root Hipercow root, usually best NULL

Value

Nothing, called for its side effects only.

See Also

hipercow_configuration, which shows currently enabled drivers.

task_cancel 35

task_cancel Cancel tasks

Description

Cancel one or more tasks

Usage

task_cancel(id, follow = TRUE, root = NULL)

Arguments

id The task id or task ids to cancel

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A logical vector the same length as id indicating if the task was cancelled. This will be FALSE if
the task was already completed, not running, etc.

Examples

cleanup <- hipercow_example_helper()

ids <- c(task_create_expr(Sys.sleep(2)), task_create_expr(runif(1)))

The first task may or not be cancelled (depends on if it was
started already) but the second one will almost certainly be
cancelled:
task_cancel(ids)

cleanup()

task_create_bulk_call Create bulk tasks from a call

Description

Create a bulk set of tasks based on applying a function over a vector or data.frame. This is the
bulk equivalent of task_create_call, in the same way that task_create_bulk_expr is a bulk version of
task_create_expr.

36 task_create_bulk_call

Usage

task_create_bulk_call(
fn,
data,
args = NULL,
environment = "default",
bundle_name = NULL,
driver = NULL,
resources = NULL,
envvars = NULL,
parallel = NULL,
root = NULL

)

Arguments

fn The function to call

data The data to apply the function over. This can be a vector or list, in which case
we act like lapply and apply fn to each element in turn. Alternatively, this can
be a data.frame, in which case each row is taken as a set of arguments to fn.
Note that if data is a data.frame then all arguments to fn are named.

args Additional arguments to fn, shared across all calls. These must be named. If you
are using a data.frame for data, you’d probably be better off adding additional
columns that don’t vary across rows, but the end result is the same.

environment Name of the hipercow environment to evaluate the task within.

bundle_name Name to pass to hipercow_bundle_create when making a bundle. If NULL we
use a random name. We always overwrite, so if bundle_name already refers to
a bundle it will be replaced.

driver Name of the driver to use to submit the task. The default (NULL) depends on your
configured drivers; if you have no drivers configured no submission happens (or
indeed is possible). If you have exactly one driver configured we’ll submit your
task with it. If you have more than one driver configured, then we will error,
though in future versions we may fall back on a default driver if you have one
configured. If you pass FALSE here, submission is prevented even if you have no
driver configured.

resources A list generated by hipercow_resources giving the cluster resource requirements
to run your task.

envvars Environment variables as generated by hipercow_envvars, which you might use
to control your task. These will be combined with the default environment
variables (see vignettes("details"), this can be overridden by the option
hipercow.default_envvars), and any driver-specific environment variables
(see vignette("windows")). Variables provided here have the highest prece-
dence. You can unset an environment variable by setting it to NA.

parallel Parallel configuration as generated by hipercow_parallel, which defines which
method, if any, will be used to initialise your task for parallel execution.

root A hipercow root, or path to it. If NULL we search up your directory tree.

task_create_bulk_expr 37

Value

A hipercow_bundle object, which groups together tasks, and for which you can use a set of
grouped functions to get status (hipercow_bundle_status), results (hipercow_bundle_result)
etc.

Examples

cleanup <- hipercow_example_helper()

The simplest way to use this function is like lapply:
x <- runif(5)
bundle <- task_create_bulk_call(sqrt, x)
hipercow_bundle_wait(bundle)
hipercow_bundle_result(bundle) # lapply(x, sqrt)

You can pass additional arguments in via 'args':
x <- runif(5)
bundle <- task_create_bulk_call(log, x, list(base = 3))
hipercow_bundle_wait(bundle)
hipercow_bundle_result(bundle) # lapply(x, log, base = 3)

Passing in a data.frame acts like Map (though with all arguments named)
x <- data.frame(a = runif(5), b = rpois(5, 10))
bundle <- task_create_bulk_call(function(a, b) sum(rnorm(b)) / a, x)
hipercow_bundle_wait(bundle)
hipercow_bundle_result(bundle) # Map(f, xa, xb)

cleanup()

task_create_bulk_expr Create bulk tasks from an expression

Description

Create a bulk set of tasks. This is an experimental interface and does not have an analogue within
didehpc. Variables in data take precedence over variables in the environment in which expr was
created. There is no "pronoun" support yet (see rlang docs). Use !! to pull a variable from the
environment if you need to, but be careful not to inject something really large (e.g., any vector
really) or you’ll end up with a revolting expression and poor backtraces. We will likely change
some of these semantics later, be careful.

Usage

task_create_bulk_expr(
expr,
data,
environment = "default",
bundle_name = NULL,

38 task_create_bulk_expr

driver = NULL,
resources = NULL,
envvars = NULL,
parallel = NULL,
root = NULL

)

Arguments

expr An expression, as for task_create_expr

data Data that you wish to inject row-wise into the expression

environment Name of the hipercow environment to evaluate the task within.

bundle_name Name to pass to hipercow_bundle_create when making a bundle. If NULL we
use a random name. We always overwrite, so if bundle_name already refers to
a bundle it will be replaced.

driver Name of the driver to use to submit the task. The default (NULL) depends on your
configured drivers; if you have no drivers configured no submission happens (or
indeed is possible). If you have exactly one driver configured we’ll submit your
task with it. If you have more than one driver configured, then we will error,
though in future versions we may fall back on a default driver if you have one
configured. If you pass FALSE here, submission is prevented even if you have no
driver configured.

resources A list generated by hipercow_resources giving the cluster resource requirements
to run your task.

envvars Environment variables as generated by hipercow_envvars, which you might use
to control your task. These will be combined with the default environment
variables (see vignettes("details"), this can be overridden by the option
hipercow.default_envvars), and any driver-specific environment variables
(see vignette("windows")). Variables provided here have the highest prece-
dence. You can unset an environment variable by setting it to NA.

parallel Parallel configuration as generated by hipercow_parallel, which defines which
method, if any, will be used to initialise your task for parallel execution.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A hipercow_bundle object, which groups together tasks, and for which you can use a set of
grouped functions to get status (hipercow_bundle_status), results (hipercow_bundle_result)
etc.

See Also

hipercow_bundle_wait, hipercow_bundle_result for working with bundles of tasks

task_create_call 39

Examples

cleanup <- hipercow_example_helper()

Suppose we have a data.frame:
d <- data.frame(a = 1:5, b = runif(5))

We can create a "bundle" by applying an expression involving "a"
and "b":
bundle <- task_create_bulk_expr(sqrt(a * b), d)

Once you have your bundle, interact with it using the bundle
analogues of the usual task functions:
hipercow_bundle_wait(bundle)
hipercow_bundle_result(bundle)

cleanup()

task_create_call Create task from call

Description

Create a task based on a function call. This is fairly similar to callr::r, and forms the basis of
lapply()-like task submission. Sending a call may have slightly different semantics than you ex-
pect if you send a closure (a function that binds data), and we may change behaviour here until we
find a happy set of compromises. See Details for more on this. The expression task_create_call(f,
list(a, b, c)) is similar to task_create_expr(f(a, b, c)), use whichever you prefer.

Usage

task_create_call(
fn,
args,
environment = "default",
driver = NULL,
resources = NULL,
envvars = NULL,
parallel = NULL,
root = NULL

)

Arguments

fn The function to call.

args A list of arguments to pass to the function

environment Name of the hipercow environment to evaluate the task within.

40 task_create_call

driver Name of the driver to use to submit the task. The default (NULL) depends on your
configured drivers; if you have no drivers configured no submission happens (or
indeed is possible). If you have exactly one driver configured we’ll submit your
task with it. If you have more than one driver configured, then we will error,
though in future versions we may fall back on a default driver if you have one
configured. If you pass FALSE here, submission is prevented even if you have no
driver configured.

resources A list generated by hipercow_resources giving the cluster resource requirements
to run your task.

envvars Environment variables as generated by hipercow_envvars, which you might use
to control your task. These will be combined with the default environment
variables (see vignettes("details"), this can be overridden by the option
hipercow.default_envvars), and any driver-specific environment variables
(see vignette("windows")). Variables provided here have the highest prece-
dence. You can unset an environment variable by setting it to NA.

parallel Parallel configuration as generated by hipercow_parallel, which defines which
method, if any, will be used to initialise your task for parallel execution.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Details

Things are pretty unambiguous when you pass in a function from a package, especially when you
refer to that package with its namespace (e.g. pkg::fn).

If you pass in the name without a namespace from a package that you have loaded with library()
locally but you have not loaded with library within your hipercow environment, we may not do
the right thing and you may see your task fail, or find a different function with the same name.
We may change the semantics here in a future version to attach your package immediately before
running the task.

If you pass in an anonymous function (e.g., function(x) x + 1) we may or may not do the right
thing with respect to environment capture. We never capture the global environment so if your func-
tion is a closure that tries to bind a symbol from the global environment it will not work. Like with
callr::r, anonymous functions will be easiest to think about where they are fully self contained
(i.e., all inputs to the functions come through args). If you have bound a local environment, we
may do slightly better, but semantics here are undefined and subject to change.

R does some fancy things with function calls that we don’t try to replicate. In particular you may
have noticed that this works:

c <- "x"
c(c, c) # a vector of two "x"'s

You can end up in this situation locally with:

f <- function(x) x + 1
local({
f <- 1
f(f) # 2

})

task_create_explicit 41

this is because when R looks for the symbol for the call it skips over non-function objects. We don’t
reconstruct environment chains in exactly the same way as you would have locally so this is not
possible.

Value

A task id, a string of hex characters. Use this to interact with the task.

Examples

cleanup <- hipercow_example_helper()

Similar to the example in task_create_call
id <- task_create_call(stats::runif, list(5))
task_info(id)
task_wait(id)
task_result(id)

Unlike task_create_explicit, variables are automatically included:
id <- task_create_call(function(x, y) x + y, list(2, 5))
task_info(id)
task_wait(id)
task_result(id)

cleanup()

task_create_explicit Create explicit task

Description

Create an explicit task. Explicit tasks are the simplest sort of task in hipercow and do nothing magic.
They accept an R expression (from quote or friends) and possibly a set of variables to export from
the global environment. This can then be run on a cluster by loading your variables and running
your expression. If your expression depends on packages being attached then you should pass a
vector of package names too. This function may disappear, and is used by us to think about the
package, it’s not designed to really be used.

Usage

task_create_explicit(
expr,
export = NULL,
envir = parent.frame(),
environment = "default",
driver = NULL,
resources = NULL,
envvars = NULL,
parallel = NULL,

42 task_create_explicit

root = NULL
)

Arguments

expr Unevaluated expression object, e.g., from quote

export Optional character vector of names of objects to export into the evaluating envi-
ronment

envir Local R environment in which to find variables for export. The default is the
parent frame, which will often do the right thing. Another sensible choice is
.GlobalEnv to use the global environment.

environment Name of the hipercow environment to evaluate the task within.

driver Name of the driver to use to submit the task. The default (NULL) depends on your
configured drivers; if you have no drivers configured no submission happens (or
indeed is possible). If you have exactly one driver configured we’ll submit your
task with it. If you have more than one driver configured, then we will error,
though in future versions we may fall back on a default driver if you have one
configured. If you pass FALSE here, submission is prevented even if you have no
driver configured.

resources A list generated by hipercow_resources giving the cluster resource requirements
to run your task.

envvars Environment variables as generated by hipercow_envvars, which you might use
to control your task. These will be combined with the default environment
variables (see vignettes("details"), this can be overridden by the option
hipercow.default_envvars), and any driver-specific environment variables
(see vignette("windows")). Variables provided here have the highest prece-
dence. You can unset an environment variable by setting it to NA.

parallel Parallel configuration as generated by hipercow_parallel, which defines which
method, if any, will be used to initialise your task for parallel execution.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A task id, a string of hex characters. Use this to interact with the task.

Examples

cleanup <- hipercow_example_helper()

About the most simple task that can be created:
id <- task_create_explicit(quote(sqrt(2)))
task_wait(id)
task_result(id)

Variables are not automatically included with the expression:
a <- 5
id <- task_create_explicit(quote(sqrt(a)))
task_info(id)

task_create_expr 43

task_wait(id)
task_result(id)

Include variables by passing them via 'export':
id <- task_create_explicit(quote(sqrt(a)), export = "a")
task_info(id)
task_wait(id)
task_result(id)

cleanup()

task_create_expr Create a task based on an expression

Description

Create a task based on an expression. This is similar to task_create_explicit except more magic,
and is closer to the interface that we expect people will use.

Usage

task_create_expr(
expr,
environment = "default",
driver = NULL,
resources = NULL,
envvars = NULL,
parallel = NULL,
root = NULL

)

Arguments

expr The expression, does not need quoting. See Details.

environment Name of the hipercow environment to evaluate the task within.

driver Name of the driver to use to submit the task. The default (NULL) depends on your
configured drivers; if you have no drivers configured no submission happens (or
indeed is possible). If you have exactly one driver configured we’ll submit your
task with it. If you have more than one driver configured, then we will error,
though in future versions we may fall back on a default driver if you have one
configured. If you pass FALSE here, submission is prevented even if you have no
driver configured.

resources A list generated by hipercow_resources giving the cluster resource requirements
to run your task.

44 task_create_expr

envvars Environment variables as generated by hipercow_envvars, which you might use
to control your task. These will be combined with the default environment
variables (see vignettes("details"), this can be overridden by the option
hipercow.default_envvars), and any driver-specific environment variables
(see vignette("windows")). Variables provided here have the highest prece-
dence. You can unset an environment variable by setting it to NA.

parallel Parallel configuration as generated by hipercow_parallel, which defines which
method, if any, will be used to initialise your task for parallel execution.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Details

The expression passed as expr will typically be a function call (e.g., f(x)). We will analyse the
expression and find all variables that you reference (in the case of f(x) this is x) and combine this
with the function name to run on the cluster. If x cannot be found in your calling environment we
will error; this behaviour is subject to change so let us know if you have other thoughts.

Alternatively you may provide a multiline statement by using {} to surround multiple lines, such
as:

task_create_expr({
x <- runif(1)
f(x)

}, ...)

in this case, we apply a simple heuristic to work out that x is locally assigned and should not be
saved with the expression.

If you reference values that require a lot of memory, hipercow will error and refuse to save the
task. This is to prevent you accidentally including values that you will make available through an
environment, and to prevent making the hipercow directory excessively large. Docs on controlling
this process are still to be written.

Value

A task id, a string of hex characters. Use this to interact with the task.

Examples

cleanup <- hipercow_example_helper()

Similar to task_create_explicit, but we don't include the 'quote'
id <- task_create_expr(runif(5))
task_wait(id)
task_result(id)

Unlike task_create_explicit, variables are automatically included:
n <- 3
id <- task_create_expr(runif(n))
task_info(id)
task_wait(id)

task_create_script 45

task_result(id)

cleanup()

task_create_script Create script task

Description

Create a task from a script. This will arrange to run the file script via hipercow. The script must
exist within your hipercow root, but you may change to the directory of the script as it executes
(otherwise we will evaluate from your current directory relative to the hipercow root, as usual).

Usage

task_create_script(
script,
chdir = FALSE,
echo = TRUE,
environment = "default",
driver = NULL,
resources = NULL,
envvars = NULL,
parallel = NULL,
root = NULL

)

Arguments

script Path for the script

chdir Logical, indicating if we should change the working directory to the direc-
tory containing script before executing it (similar to the chdir argument to
source).

echo Passed through to source to control printing while evaluating. Generally you
will want to leave this as TRUE

environment Name of the hipercow environment to evaluate the task within.

driver Name of the driver to use to submit the task. The default (NULL) depends on your
configured drivers; if you have no drivers configured no submission happens (or
indeed is possible). If you have exactly one driver configured we’ll submit your
task with it. If you have more than one driver configured, then we will error,
though in future versions we may fall back on a default driver if you have one
configured. If you pass FALSE here, submission is prevented even if you have no
driver configured.

resources A list generated by hipercow_resources giving the cluster resource requirements
to run your task.

46 task_eval

envvars Environment variables as generated by hipercow_envvars, which you might use
to control your task. These will be combined with the default environment
variables (see vignettes("details"), this can be overridden by the option
hipercow.default_envvars), and any driver-specific environment variables
(see vignette("windows")). Variables provided here have the highest prece-
dence. You can unset an environment variable by setting it to NA.

parallel Parallel configuration as generated by hipercow_parallel, which defines which
method, if any, will be used to initialise your task for parallel execution.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

A task id, a string of hex characters. Use this to interact with the task.

Examples

cleanup <- hipercow_example_helper()

Create a small script; this would usually be several lines of
course. The script will need to do something as a side effect
to be worth calling, so here we write a file.
writeLines("saveRDS(mtcars, 'data.rds')", "script.R")

Now create a task from this script
id <- task_create_script("script.R")
task_info(id)
task_wait(id)
task_result(id)
dir()

cleanup()

task_eval Run a task

Description

Run a task that has been created by a task_create_* function, e.g., task_create_explicit(),
task_create_expr(). Generally users should not run this function directly.

Usage

task_eval(id, envir = .GlobalEnv, verbose = FALSE, root = NULL)

task_info 47

Arguments

id The task identifier

envir An environment in which to evaluate the expression. For non-testing purposes,
generally ignore this, the global environment will be likely the expected envi-
ronment.

verbose Logical, indicating if we should print information about what we do as we do it.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

Logical indicating success (TRUE) or failure (FALSE)

Examples

cleanup <- hipercow_example_helper(runner = FALSE)
id <- task_create_expr(runif(1), driver = FALSE)
Status is only 'created', not 'submitted', as we did not submit
task. This task can never run.
task_status(id)

Explicitly evaluate the task:
task_eval(id, verbose = TRUE)
task_result(id)

cleanup()

task_info Fetch task information

Description

Fetch information about a task. This is much more detailed than the information in task_status.
If a task is running we also fetch the true status via its driver, which can be slower.

Usage

task_info(id, follow = TRUE, root = NULL)

Arguments

id A single task id to fetch information for

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

48 task_log_show

Value

An object of class hipercow_task_info, which will print nicely. This is just a list with elements:

• id: the task identifier

• status: the retrieved status

• driver: the driver used to run the task (or NA)

• data: the task data (depends on the type of task)

• times: a vector of times

• retry_chain: the retry chain (or NULL)

You can see and access these elements more easily by running unclass() on the result of task_info().

Examples

cleanup <- hipercow_example_helper()
id <- task_create_expr(runif(1))
task_wait(id)

Task information at completion includes times:
task_info(id)

If you need to work with these times, use the "times" element:
task_info(id)$times

If a task is retried, this information appears as a retry chain:
id2 <- task_retry(id)
task_info(id2, follow = FALSE)
task_info(id2)

cleanup()

task_log_show Get task log

Description

Get the task log, if the task has produced one. Tasks run by the windows driver will generally
produce a log. A log might be quite long, and you might want to print it to screen in its entirety
(task_log_show), or return it as character vector (task_log_value).

Usage

task_log_show(id, outer = FALSE, follow = TRUE, root = NULL)

task_log_value(id, outer = FALSE, follow = TRUE, root = NULL)

task_log_watch(

task_log_show 49

id,
poll = 1,
skip = 0,
timeout = NULL,
progress = NULL,
follow = TRUE,
root = NULL

)

Arguments

id The task identifier

outer Logical, indicating if we should request the "outer" logs; these are logs from the
underlying HPC software before it hands off to hipercow.

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

poll Time, in seconds, used to throttle calls to the status function. The default is 1
second

skip Optional integer indicating how to handle log content that exists at the point
where we start watching. The default (0) shows all log contents. A positive
integer skips that many lines, while a negative integer shows only that many
lines (so -5 shows the first five lines in the log). You can pass Inf to discard all
previous logs, but stream all new ones.

timeout The time to wait for the task to complete. The default is to wait forever.

progress Logical value, indicating if a progress spinner should be used. The default NULL
uses the option hipercow.progress, and if unset displays a progress bar in an
interactive session.

Details

The function task_log_watch has similar semantics to task_wait but does not error on timeout,
and always displays a log.

Value

Depending on the function:

• task_log_show returns the log value contents invisibly, but primarily displays the log contents
on the console as a side effect

• task_log_value returns a character of log contents

• task_log_watch returns the status converted to logical (as for task_wait)

Examples

cleanup <- hipercow_example_helper(with_logging = TRUE)

Tasks that don't produce any output (print, cat, warning, etc)

50 task_result

will only contain logging information from hipercow itself
id <- task_create_expr(runif(1))
task_wait(id)
task_log_show(id)

If your task creates output then it will appear within the
horizontal rules:
id <- task_create_expr({

message("Starting analysis")
x <- mean(runif(100))
message("all done!")
x

})
task_wait(id)
task_log_show(id)

Use "task_log_value" to get the log value as a character vector
task_log_value(id)

Depending on the driver you are using, there may be useful
information in the "outer" log; the logs produced by the
submission system before hipercow takes over:
task_log_show(id, outer = TRUE)

cleanup()

task_result Get task result

Description

Get the task result. This might be an error if the task has failed.

Usage

task_result(id, follow = TRUE, root = NULL)

Arguments

id The task identifier

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Value

The value of the queued expression

task_retry 51

Examples

cleanup <- hipercow_example_helper()

Typical usage
id <- task_create_expr(runif(1))
task_wait(id)
task_result(id)

Tasks that error return error values as results
id <- task_create_expr(readRDS("nosuchfile.rds"))
task_wait(id)
task_result(id)

cleanup()

task_retry Retry a task

Description

Retry one or more tasks. This creates a new task that copies the work of the old one. Most of the
time this is transparent. We’ll document this in the "advanced" vignette once it’s written.

Usage

task_retry(id, driver = NULL, resources = NULL, root = NULL)

Arguments

id The identifier or identifiers of tasks to retry.

driver Name of the driver to use to submit the task. The default (NULL) depends on your
configured drivers; if you have no drivers configured no submission happens (or
indeed is possible). If you have exactly one driver configured we’ll submit your
task with it. If you have more than one driver configured, then we will error,
though in future versions we may fall back on a default driver if you have one
configured. If you pass FALSE here, submission is prevented even if you have no
driver configured.

resources A list generated by hipercow_resources giving the cluster resource requirements
to run your task.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Details

This ends up being a little more complicated than ideal in order to keep things relatively fast, while
keeping our usual guarantees about race conditions etc. Basically; retrying is the only way a task
can move out of a terminal state but it still does not modify the existing task. Instead, we keep a
separate register of whether a task has been retried or not. Each time we retry we write into this

52 task_status

register. When you query about the status etc of a task you can then add a follow argument to
control whether or not we check the register. We assume that you never call this in parallel; if you
do then retries may be lost. You can run task_retry(NULL) to refresh the cached copy of the retry
map if you need to.

Value

New identifiers for the retried tasks

Examples

cleanup <- hipercow_example_helper()

For demonstration, we just generate random numbers as then it's
more obvious that things have been rerun:
id1 <- task_create_expr(runif(1))
task_wait(id1)
task_result(id1)

Now retry the task and get the retried result:
id2 <- task_retry(id1)
task_wait(id2)
task_result(id2)

After a retry, both the original and derived tasks know about
each other:
task_info(id1)
task_info(id2)

By default every task will "follow" and access the most recent
task in the chain:
task_result(id1) == task_result(id2)

You can prevent this by passing follow = FALSE to get the value
of this particular attempt:
task_result(id1, follow = FALSE)

Tasks can be retried as many times as needed, creating a
chain. It does not matter which task you retry as we always
follow all the way to the end of the chain before retrying:
id3 <- task_retry(id1)
task_info(id1, follow = FALSE)
task_info(id3)

cleanup()

task_status Get task status

task_status 53

Description

Get the status of a task. See Details for the lifecycle.

Usage

task_status(id, follow = TRUE, root = NULL)

Arguments

id The task identifier

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Details

A task passes through a lifecycle:

• created

• submitted

• running

• success, failure, cancelled

These occur in increasing order and the result of this function is the furthest through this list.

Later, we will introduce other types to cope with tasks that are blocked on dependencies (or have
become impossible due to failed dependencies).

Value

A string with the task status. Tasks that do not exist will have a status of NA.

Examples

cleanup <- hipercow_example_helper()

ids <- c(task_create_expr(runif(1)), task_create_expr(runif(1)))
Depending on how fast these tasks get picked up they will be one
of 'submitted', 'running' or 'success':
task_status(ids)

Wait until both tasks are complete
task_wait(ids[[1]])
task_wait(ids[[2]])
And both are success now
task_status(ids)

cleanup()

54 task_wait

task_submit Submit a task

Description

Submit a task to a queue. This is a lower-level function that you will not often need to call. Typically
a task will be submitted automatically to your driver on creation (e.g., with task_create_expr()),
unless you specified driver = FALSE or you had not yet configured a driver.

Usage

task_submit(id, ..., resources = NULL, driver = NULL, root = NULL)

Arguments

id A vector of task ids

... Disallowed additional arguments, don’t use.

resources A list generated by hipercow_resources giving the cluster resource require-
ments to run your task.

driver The name of the driver to use, or you can leave blank if only one is configured
(this will be typical).

root The hipercow root

task_wait Wait for a task to complete

Description

Wait for a single task to complete (or to start). This function is very similar to task_log_watch,
except that it errors if the task does not complete (so that it can be used easily to ensure a task has
completed) and does not return any logs.

Usage

task_wait(
id,
for_start = FALSE,
timeout = NULL,
poll = 1,
progress = NULL,
follow = TRUE,
root = NULL

)

windows_authenticate 55

Arguments

id The task identifier

for_start Logical value, indicating if we only want to wait for the task to start rather
than complete. This will block until the task moves away from submitted, and
will return when it takes the status running or any terminal status (success,
failure, cancelled). Note that this does not guarantee that your task will still
be running by the time task_wait exits, your task may have finished by then!

timeout The time to wait for the task to complete. The default is to wait forever.

poll Time, in seconds, used to throttle calls to the status function. The default is 1
second

progress Logical value, indicating if a progress spinner should be used. The default NULL
uses the option hipercow.progress, and if unset displays a progress bar in an
interactive session.

follow Logical, indicating if we should follow any retried tasks.

root A hipercow root, or path to it. If NULL we search up your directory tree.

Details

The progress spinners here come from the cli package and will respond to cli’s options. In particular
cli.progress_clear and cli.progress_show_after.

Value

Logical value, TRUE if the task completed successfully, FALSE otherwise.

Examples

cleanup <- hipercow_example_helper()

id <- task_create_expr(sqrt(2))
task_wait(id)

cleanup()

windows_authenticate DIDE windows credentials

Description

Register DIDE windows credentials.

Usage

windows_authenticate()

56 windows_check

Details

In order to be able to communicate with the Windows DIDE HPC system, we need to be able to
communicate with the HPC portal (https::mrcdata.dide.ic.ac.uk/hpc), and for this we need
your DIDE password and username. This is typically, but not always, the same as your Imperial
credentials. We store this information securely using the keyring package, so when unlocking your
credentials you will be prompted for your computer password, which will be your DIDE password
if you use a windows machine connected to the DIDE domain, but will likely differ from either your
DIDE or Imperial password if you are outside the DIDE domain, or if you don’t use Windows.

Value

Nothing, this function is called for its side effect of setting or updating your credentials within the
keyring.

Examples

windows_authenticate()

windows_check Check we can use windows cluster

Description

Perform some basic checks to make that your system is configured to use the windows cluster
properly. Calling this when something goes wrong is never a bad idea.

Usage

windows_check(path = getwd())

Arguments

path Path to check; typically this will be your working directory.

Value

Invisibly, a logical; TRUE if all checks succeed and FALSE otherwise.

Examples

windows_check()

https::mrcdata.dide.ic.ac.uk/hpc
https://keyring.r-lib.org/

windows_generate_keypair 57

windows_generate_keypair

Generate keypair

Description

Generate a keypair for encrypting small data to send to the windows cluster. This can be used to
encrypt environment variables, and possibly other workflows in future. By default, if you have ever
created a keypair we do not replace it if it already exists, unless you set update = TRUE so you may
call this function safely to ensure that you do have a keypair set up.

Usage

windows_generate_keypair(update = FALSE)

Arguments

update Replace the existing keypair. You will need to use this if you accidentally re-
move the .hipercow/ directory from your network home share, or if you want
to renew your key.

Value

Nothing, called for its side effect

Examples

Generate a new keypair, if one does not exist
windows_generate_keypair()

windows_path Describe a path mapping

Description

Describe a path mapping for use when setting up jobs on the cluster.

Usage

windows_path(path_local, path_remote, drive_remote, call = NULL)

58 windows_username

Arguments

path_local The point where the drive is attached locally. On Windows this will be some-
thing like "Q:/", on Mac something like "/Volumes/mountname", and on Linux
it could be anything at all, depending on what you used when you mounted it
(or what is written in /etc/fstab)

path_remote The network path for this drive. It will look something like \\\\fi--didef3.dide.ic.ac.uk\\tmp\\.
Unfortunately backslashes are really hard to get right here and you will need to
use twice as many as you expect (so four backslashes at the beginning and then
two for each separator). If this makes you feel bad know that you are not alone:
https://xkcd.com/1638 – alternatively you may use forward slashes in place of
backslashes (e.g. //fi--didef3.dide.ic.ac.uk/tmp)

drive_remote The place to mount the drive on the cluster. We’re probably going to mount
things at Q: and T: already so don’t use those. And things like C: are likely to
be used. Perhaps there are some guidelines for this somewhere?

call The name of the calling function, for error reporting.

Examples

Suppose you have mounted your malaria share at "~/net/malaria"
(e.g., on a Linux machine). You can tell the cluster to mount
this as "M:" when running tasks by first creating a path
mapping:
share <- windows_path("~/net/malaria",

"//fi--didenas1.dide.ic.ac.uk/Malaria",
"M:")

This share object contains information about how to relate your
local and remote paths:
share

When configuring the cluster you might pass this:
hipercow_configure("windows", shares = share)

windows_username Report windows username

Description

Report the username used to log into the web portal for use with the windows cluster. This may
or may not be the same as your local username. We may ask you to run this when helping debug
cluster failures.

Usage

windows_username()

windows_username 59

Value

Your username, as a string

Examples

Return your windows username
windows_username()

Index

callr::r, 39

data.frame, 6, 27, 35, 36
Date, 30
difftime, 28

hipercow_bundle_cancel, 3
hipercow_bundle_create, 3, 36, 38
hipercow_bundle_delete, 5
hipercow_bundle_list, 6, 6
hipercow_bundle_load, 6
hipercow_bundle_log_value, 7
hipercow_bundle_result, 8, 38
hipercow_bundle_retry, 9
hipercow_bundle_status, 10
hipercow_bundle_wait, 11, 38
hipercow_cluster_info, 12
hipercow_configuration, 13, 34
hipercow_configure, 13, 20, 34
hipercow_configure(), 19
hipercow_driver, 14
hipercow_environment_create, 16, 21, 23,

26, 33
hipercow_environment_delete

(hipercow_environment_create),
16

hipercow_environment_exists
(hipercow_environment_create),
16

hipercow_environment_list
(hipercow_environment_create),
16

hipercow_environment_show
(hipercow_environment_create),
16

hipercow_envvars, 18, 33, 36, 38, 40, 42, 44,
46

hipercow_hello, 19
hipercow_init, 19

hipercow_parallel, 20, 33, 36, 38, 40, 42,
44, 46

hipercow_parallel_get_cores, 22
hipercow_parallel_set_cores, 22
hipercow_provision, 21, 23
hipercow_provision_check

(hipercow_provision_list), 26
hipercow_provision_compare, 25
hipercow_provision_list, 25, 26
hipercow_purge, 27
hipercow_resources, 16, 20, 29, 31–33, 36,

38, 40, 42, 43, 45, 51
hipercow_resources_validate, 12, 31
hipercow_rrq_controller, 32, 33
hipercow_rrq_controller(), 21
hipercow_rrq_workers_submit, 33
hipercow_rrq_workers_submit(), 21, 32
hipercow_unconfigure, 14, 34

lapply(), 39

POSIXt, 30

rrq::rrq_controller, 33
rrq::rrq_controller(), 32

source, 45

task_cancel, 3, 28, 35
task_create_bulk_call, 35
task_create_bulk_expr, 35, 37
task_create_call, 35, 39
task_create_explicit, 41, 43
task_create_explicit(), 46
task_create_expr, 29, 35, 38, 43
task_create_expr(), 46, 54
task_create_script, 45
task_eval, 46
task_info, 47
task_log_show, 48
task_log_value (task_log_show), 48

60

INDEX 61

task_log_watch, 54
task_log_watch (task_log_show), 48
task_result, 50
task_retry, 29, 51
task_retry(), 9
task_status, 52
task_submit, 54
task_wait, 11, 49, 54

utils::glob2rx, 28

windows_authenticate, 55
windows_check, 56
windows_generate_keypair, 57
windows_path, 57
windows_username, 58

	hipercow_bundle_cancel
	hipercow_bundle_create
	hipercow_bundle_delete
	hipercow_bundle_list
	hipercow_bundle_load
	hipercow_bundle_log_value
	hipercow_bundle_result
	hipercow_bundle_retry
	hipercow_bundle_status
	hipercow_bundle_wait
	hipercow_cluster_info
	hipercow_configuration
	hipercow_configure
	hipercow_driver
	hipercow_environment_create
	hipercow_envvars
	hipercow_hello
	hipercow_init
	hipercow_parallel
	hipercow_parallel_get_cores
	hipercow_parallel_set_cores
	hipercow_provision
	hipercow_provision_compare
	hipercow_provision_list
	hipercow_purge
	hipercow_resources
	hipercow_resources_validate
	hipercow_rrq_controller
	hipercow_rrq_workers_submit
	hipercow_unconfigure
	task_cancel
	task_create_bulk_call
	task_create_bulk_expr
	task_create_call
	task_create_explicit
	task_create_expr
	task_create_script
	task_eval
	task_info
	task_log_show
	task_result
	task_retry
	task_status
	task_submit
	task_wait
	windows_authenticate
	windows_check
	windows_generate_keypair
	windows_path
	windows_username
	Index

