
Package: mcstate (via r-universe)
July 1, 2024

Title Monte Carlo Methods for State Space Models

Version 0.9.22

Description Implements Monte Carlo methods for state-space models such
as 'SIR' models in epidemiology. Particle MCMC (pmcmc) and SMC2
methods are planned. This package is particularly designed to
work with odin/dust models, but we will see how general it
becomes.

License MIT + file LICENSE

Encoding UTF-8

Language en-GB

URL https://github.com/mrc-ide/mcstate

BugReports https://github.com/mrc-ide/mcstate/issues

Imports R6, callr (>= 3.7.0), dust (>= 0.13.12), processx, progress
(>= 1.2.0)

Suggests brio, coda, decor, fs, knitr, mockery, mvtnorm, odin.dust (>=
0.3.0), rmarkdown, testthat, withr

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

Remotes mrc-ide/dust, mrc-ide/odin.dust

VignetteBuilder knitr

Repository https://mrc-ide.r-universe.dev

RemoteUrl https://github.com/mrc-ide/mcstate

RemoteRef master

RemoteSha 3549d64ff9b0d3aac1f9eec435093fc51f9a32cc

Contents
adaptive_proposal_control . 2
array_bind . 4

1

https://github.com/mrc-ide/mcstate
https://github.com/mrc-ide/mcstate/issues

2 adaptive_proposal_control

array_drop . 5
array_flatten . 6
array_reshape . 7
if2 . 8
if2_control . 10
if2_parameter . 10
if2_parameters . 11
multistage_epoch . 14
multistage_parameters . 14
particle_deterministic . 15
particle_deterministic_state . 19
particle_filter . 21
particle_filter_data . 27
particle_filter_initial . 29
particle_filter_state . 29
pmcmc . 32
pmcmc_chains_prepare . 33
pmcmc_combine . 34
pmcmc_control . 35
pmcmc_parameter . 38
pmcmc_parameters . 39
pmcmc_parameters_nested . 43
pmcmc_predict . 47
pmcmc_thin . 48
pmcmc_varied_parameter . 49
smc2 . 50
smc2_control . 52
smc2_parameter . 53
smc2_parameters . 54

Index 56

adaptive_proposal_control

Adaptive proposal control

Description

Control for adaptive proposals, used in pmcmc_control for deterministic models.

Usage

adaptive_proposal_control(
initial_vcv_weight = 1000,
initial_scaling = 1,
initial_scaling_weight = NULL,
min_scaling = 0,
scaling_increment = NULL,

adaptive_proposal_control 3

log_scaling_update = TRUE,
acceptance_target = 0.234,
forget_rate = 0.2,
forget_end = Inf,
adapt_end = Inf,
pre_diminish = 0

)

Arguments

initial_vcv_weight

Weight of the initial variance-covariance matrix used to build the proposal of
the random-walk. Higher values translate into higher confidence of the initial
variance-covariance matrix and means that update from additional samples will
be slower.

initial_scaling

The initial scaling of the variance covariance matrix to be used to generate the
multivariate normal proposal for the random-walk Metropolis-Hastings algo-
rithm. To generate the proposal matrix, the weighted variance covariance ma-
trix is multiplied by the scaling parameter squared times 2.38^2 / n_pars (where
n_pars is the number of fitted parameters). Thus, in a Gaussian target parameter
space, the optimal scaling will be around 1.

initial_scaling_weight

The initial weight used in the scaling update. The scaling weight will increase
after the first pre_diminish iterations, and as the scaling weight increases the
adaptation of the scaling diminishes. If NULL (the default) the value is 5 / (ac-
ceptance_target * (1 - acceptance_target)).

min_scaling The minimum scaling of the variance covariance matrix to be used to gener-
ate the multivariate normal proposal for the random-walk Metropolis-Hastings
algorithm.

scaling_increment

The scaling increment which is added or subtracted to the scaling factor of the
variance-covariance after each adaptive step. If NULL (the default) then an opti-
mal value will be calculated.

log_scaling_update

Logical, whether or not changes to the scaling parameter are made on the log-
scale.

acceptance_target

The target for the fraction of proposals that should be accepted (optimally) for
the adaptive part of the mixture model.

forget_rate The rate of forgetting early parameter sets from the empirical variance-covariance
matrix in the MCMC chains. For example, forget_rate = 0.2 (the default)
means that once in every 5th iterations we remove the earliest parameter set in-
cluded, so would remove the 1st parameter set on the 5th update, the 2nd on the
10th update, and so on. Setting forget_rate = 0 means early parameter sets
are never forgotten.

forget_end The final iteration at which early parameter sets can be forgotten. Setting forget_rate
= Inf (the default) means that the forgetting mechanism continues throughout

4 array_bind

the chains. Forgetting early parameter sets becomes less useful once the chains
have settled into the posterior mode, so this parameter might be set as an esti-
mate of how long that would take.

adapt_end The final iteration at which we can adapt the multivariate normal proposal.
Thereafter the empirical variance-covariance matrix, its scaling and its weight
remain fixed. This allows the adaptation to be switched off at a certain point to
help ensure convergence of the chain.

pre_diminish The number of updates before adaptation of the scaling parameter starts to di-
minish. Setting pre_diminish = 0 means there is diminishing adaptation of the
scaling parameter from the offset, while pre_diminish = Inf would mean there
is never diminishing adaptation. Diminishing adaptation should help the scaling
parameter to converge better, but while the chains find the location and scale of
the posterior mode it might be useful to explore with it switched off.

Details

Efficient exploration of the parameter space during an MCMC might be difficult when the target
distribution is of high dimensionality, especially if the target probability distribution present a high
degree of correlation. Adaptive schemes are used to "learn" on the fly the correlation structure by
updating the proposal distribution by recalculating the empirical variance-covariance matrix and
rescale it at each adaptive step of the MCMC.

Our implementation of an adaptive MCMC algorithm is based on an adaptation of the "acceler-
ated shaping" algorithm in Spencer (2021). The algorithm is based on a random-walk Metropolis-
Hasting algorithm where the proposal is a multi-variate Normal distribution centered on the current
point.

Spencer SEF (2021) Accelerating adaptation in the adaptive Metropolis–Hastings random walk
algorithm. Australian & New Zealand Journal of Statistics 63:468-484.

array_bind Bind arrays

Description

Bind a number of arrays, usually by their last dimension. This is useful for binding together the
sorts of arrays produced by dust and mcstate’s simulation functions.

Usage

array_bind(..., arrays = list(...), dimension = NULL)

Arguments

... Any number of arrays. All dimensions must the the same, except for the dimen-
sion being bound on which may vary.

arrays As an alternative to using ... you can provide a list directly. This is often nicer
to program with.

dimension The dimension to bind on; by default NULL means the last dimension.

array_drop 5

Value

A single array object

Examples

Consider two matricies; this is equivalent to rbind and is
pretty trivial
m1 <- matrix(1, 4, 5)
m2 <- matrix(2, 4, 2)
mcstate::array_bind(m1, m2)

For a 4d array though it's less obvious
a1 <- array(1, c(2, 3, 4, 5))
a2 <- array(2, c(2, 3, 4, 1))
a3 <- array(3, c(2, 3, 4, 3))
dim(mcstate::array_bind(a1, a2, a3))

array_drop Drop specific array dimensions

Description

Drop specific array dimensions that are equal to 1. This a more explicit, safer version of drop, which
requires you indicate which dimensions will be dropped and errors if dimensions can’t be dropped.

Usage

array_drop(x, i)

Arguments

x An array

i Index or indices of dimensions to remove

Value

An array

Examples

Suppose we have an array with a redundant 2nd dimension
m <- array(1:25, c(5, 1, 5))

commonly we might drop this with
drop(m)

in this case, array_drop is the same:
mcstate::array_drop(m, 2)

6 array_flatten

However, suppose that our matrix had, in this case, a first
dimension that was also 1 but we did not want to drop it:
m2 <- m[1, , , drop = FALSE]

Here, drop(m2) returns just a vector, discarding our first dimension
drop(m2)

However, array_drop will preserve that dimension
mcstate::array_drop(m2, 2)

array_flatten Flatten array dimensions

Description

Flatten array dimensions into a single dimension. This takes a multidimensional array and converts
some dimensions of it into a vector. Use this to drop out "middle" dimensions of a structured array.
This is conceptually the inverse of array_reshape

Usage

array_flatten(x, i)

Arguments

x An array

i An integer vector of dimensions to flatten

Value

A new array with at one or more dimensions removed

See Also

array_flatten which adds structure

Examples

x <- array(1:12, c(2, 3, 4))
mcstate::array_flatten(x, 2:3)

array_flatten and array_reshape are each others' conceptual
opposites:
y <- mcstate::array_flatten(x, 2:3)
identical(mcstate::array_reshape(y, 2, c(3, 4)), x)

array_reshape 7

array_reshape Rehape an array dimension

Description

Reshape one dimension of a multidimensional array. Use this to say that some dimension (say with
length 20) actually represents a number of other dimensions (e.g., 2 x 10 or 2 x 2 x 5). This might
be the case if you’ve been doing a simulation with a large number of parameter sets that are pooled
over some other grouping factors (e.g., in a sensitivity analysis)

Usage

array_reshape(x, i, d)

Arguments

x An array

i The index of the dimension to expand

d The new dimensions for data in the i’th dimension of x

Value

A multidimensional array

See Also

array_flatten which undoes this operation

Examples

Suppose we had a 4 x 6 array of data:
m <- matrix(1:24, 4, 6)

And suppose that the second dimension really represented a 2 x 3
matrix; so that looking at one copy of the 2nd dimension we see
m[1,]

But instead we might want to see
res <- mcstate::array_reshape(m, 2, c(2, 3))
res[1, ,]

8 if2

if2 Run iterated filtering (IF2 algorithm)

Description

Create an IF2 object for running and interacting with an IF2 inference.

Usage

if2(pars, filter, control)

if2_sample(obj, n_particles)

Arguments

pars An if2_parameters object, describing the parameters that will be varied in the
simulation, and the method of transformation into model parameters.

filter A particle_filter object. We don’t use the particle filter directly (except for sam-
pling with mcstate::if2_sample) but this shares so much validation that it’s
convenient. Be sure to set things like the seed and number of threads here if you
want to use anything other than the default.

control An if2_control() object

obj An object of class if2_fit, returned by mcstate::if2()

n_particles The number of particles to simulate, for each IF2 parameter set

Details

See: Ionides EL, Nguyen D, Atchadé Y, Stoev S, King AA (2015). "Inference for Dynamic and La-
tent Variable Models via Iterated, Perturbed Bayes Maps." PNAS, 112(3), 719–724. https://doi.org/10.1073/pnas.1410597112.

Value

An object of class if2_fit, which contains the sampled parameters (over time) and their log-
likelihoods

Examples

A basic SIR model used in the particle filter example
gen <- dust::dust_example("sir")

Some data that we will fit to, using 1 particle:
sir <- gen$new(pars = list(), time = 0, n_particles = 1)
dt <- 1 / 4
day <- seq(1, 100)
incidence <- rep(NA, length(day))
true_history <- array(NA_real_, c(5, 1, 101))
true_history[, 1, 1] <- sir$state()

if2 9

for (i in day) {
state_start <- sir$state()
sir$run(i / dt)
state_end <- sir$state()
true_history[, 1, i + 1] <- state_end
Reduction in S
incidence[i] <- state_start[1, 1] - state_end[1, 1]

}

Convert this into our required format:
data_raw <- data.frame(day = day, incidence = incidence)
data <- particle_filter_data(data_raw, "day", 4, 0)

A comparison function
compare <- function(state, observed, pars = NULL) {

if (is.null(pars$exp_noise)) {
exp_noise <- 1e6

} else {
exp_noise <- pars$exp_noise

}
incidence_modelled <- state[1,]
incidence_observed <- observed$incidence
lambda <- incidence_modelled +

rexp(length(incidence_modelled), exp_noise)
dpois(incidence_observed, lambda, log = TRUE)

}

Range and initial values for model parameters
pars <- mcstate::if2_parameters$new(

list(mcstate::if2_parameter("beta", 0.15, min = 0, max = 1),
mcstate::if2_parameter("gamma", 0.05, min = 0, max = 1)))

Set up of IF2 algorithm (the iterations and n_par_sets should be
increased here for any real use)
control <- mcstate::if2_control(

pars_sd = list("beta" = 0.02, "gamma" = 0.02),
iterations = 10,
n_par_sets = 40,
cooling_target = 0.5,
progress = interactive())

Create a particle filter object
filter <- mcstate::particle_filter$new(data, gen, 1L, compare)

Then run the IF2
res <- mcstate::if2(pars, filter, control)

Get log-likelihood estimates from running a particle filter at
each final parameter estimate
ll_samples <- mcstate::if2_sample(res, 20)

10 if2_parameter

if2_control Control for IF2

Description

Control for if2(). This function constructs a list of options and does some basic validation. Do not
manually change the values in this object. Do not refer to any argument by position as the order of
the arguments may change in future.

Usage

if2_control(pars_sd, iterations, n_par_sets, cooling_target, progress = TRUE)

Arguments

pars_sd The initial standard deviation of parameter walks.

iterations The number of IF2 iterations to run, across which the cooling is performed

n_par_sets The number of parameter sets to walk (c.f. the population size)

cooling_target A factor < 1 multiplying pars_sd, which will be reached by the end of the itera-
tions, and approached geometrically

progress Logical, indicating if a progress bar should be displayed, using progress::progress_bar.

Value

An if2_control object, which should not be modified once created. Pass this into if2()

Examples

mcstate::if2_control(list(beta = 0.2, gamma = 0.2), 100, 1000, 0.5)

if2_parameter Describe single IF2 parameter

Description

Describe a single parameter for use within IF2. Note that the name is not set here, but will end
up being naturally defined when used with if2_parameters, which collects these together for use
with if2().

if2_parameters 11

Usage

if2_parameter(
name,
initial,
min = -Inf,
max = Inf,
discrete,
integer = FALSE,
prior = NULL

)

Arguments

name Name for the parameter (a string)

initial Initial value of the parameter

min Optional minimum value for the parameter (otherwise -Inf). If given, then
initial must be at least this value.

max Optional max value for the parameter (otherwise Inf). If given, then initial
must be at most this value.

discrete Deprecated; use integer instead.

integer Logical, indicating if this parameter is integer. If TRUE then the parameter will
be rounded after a new parameter is proposed.

prior A prior function (if not given an improper flat prior is used - be careful!). It must
be a function that takes a single argument, being the value of this parameter. If
given, then prior(initial) must evaluate to a finite value.

Examples

mcstate::if2_parameter("a", 0.1)

if2_parameters if2_parameters

Description

Construct parameters for use with if2(). This creates a utility object that is used internally to work
with parameters. Most users only need to construct this object, but see the examples for how it can
be used.

Methods

Public methods:
• if2_parameters$new()

• if2_parameters$initial()

12 if2_parameters

• if2_parameters$walk_initialise()

• if2_parameters$walk()

• if2_parameters$names()

• if2_parameters$summary()

• if2_parameters$prior()

• if2_parameters$model()

Method new(): Create the if2_parameters object

Usage:
if2_parameters$new(parameters, transform = NULL)

Arguments:
parameters A list of if2_parameter objects, each of which describe a single parameter in

your model. If parameters is named, then these names must match the $name element of
each parameter is used (this is verified).

transform An optional transformation function to apply to your parameter vector immediately
before passing it to the model function. If not given, then as.list is used, as dust models
require this. However, if you need to generate derived parameters from those being actively
sampled you can do arbitrary transformations here.

Method initial(): Return the initial parameter values as a named numeric vector

Usage:
if2_parameters$initial()

Method walk_initialise(): Set up a parameter walk

Usage:
if2_parameters$walk_initialise(n_par_sets, pars_sd)

Arguments:
n_par_sets An integer number of parameter sets, which defines the size of the population

being peturbed.
pars_sd A vector of standard deviations for the walk of each parameter

Method walk(): Propose a new parameter matrix given a current matrix and walk standard
deviation vector.

Usage:
if2_parameters$walk(pars, pars_sd)

Arguments:
pars A parameter matrix, from this function or $walk_initialise()
pars_sd A vector of standard deviations for the walk of each parameter

Method names(): Return the names of the parameters

Usage:
if2_parameters$names()

Method summary(): Return a data.frame with information about parameters (name, min, max,
and integer).

if2_parameters 13

Usage:
if2_parameters$summary()

Method prior(): Compute the prior for a parameter vector

Usage:
if2_parameters$prior(pars)

Arguments:

pars a parameter matrix from $walk()

Method model(): Apply the model transformation function to a parameter vector. Output is a
list for lists, suitable for use with a dust object with pars_multi = TRUE

Usage:
if2_parameters$model(pars)

Arguments:

pars a parameter matrix from $walk()

Examples

Construct an object with two parameters:
pars <- mcstate::if2_parameters$new(

list(mcstate::if2_parameter("a", 0.1, min = 0, max = 1,
prior = function(a) log(a)),

mcstate::if2_parameter("b", 0, prior = dnorm)))

Initial parameters
pars$initial()

Create the initial parameter set
n_par_sets <- 5
pars_sd <- list("a" = 0.02, "b" = 0.02)
p_mat <- pars$walk_initialise(n_par_sets, pars_sd)
p_mat

Propose a new parameter set
p_mat <- pars$walk(p_mat, pars_sd)
p_mat

Information about parameters:
pars$names()
pars$summary()

Compute prior
pars$prior(p_mat)

Transform data for your model
pars$model(p_mat)

14 multistage_parameters

multistage_epoch Multistage filter epoch

Description

Describe an epoch within a multistage_parameters object

Usage

multistage_epoch(start, pars = NULL, transform_state = NULL)

Arguments

start The start time, in units of time in your data set. These must correspond to time
points with data. The model will complete the step to this time point, then
change parameters, then continue (so start represents the time point we move
from with these parameters)

pars Optional parameter object, replacing the model parameters at this point. If NULL
then the model parameters are not changed, and it is assumed that you will be
changing model state via transform_state.

transform_state

Optional parameter transformation function. This could be used in two cases
(1) arbitrary change to the model state (e.g., a one-off movement of state within
particles at a given time point that would be otherwise awkward to code directly
in your model), or (2) where you have provided pars and these imply a different
model state size. In this case you must provide transform_state to fill in new
model state, move things around, or delete model state depending on how the
state has changed. This function will be passed three arguments: (1) the current
model state, (2) the result of the $info() method from the model used to this
point, (3) the result of the $info() method for the new model that was created
with pars which will be run from this point. Future versions of this interface
may allow passing the parameters in too.

multistage_parameters Multistage filter parameters

Description

Construct parameters for a multi-stage particle filter.

Usage

multistage_parameters(pars, epochs)

particle_deterministic 15

Arguments

pars The parameters covering the period up to the first change in epoch.

epochs A list of multistage_epoch objects corresponding to a new paramter regime
starting at a new time point.

Value

An object of class multistage_parameters, suitable to pass through to the run method of particle_filter

particle_deterministic

Deterministic particle likelihood

Description

Create a deterministic version of the particle_filter object, which runs a single particle deter-
ministically.

Public fields

model The dust model generator being simulated (cannot be re-bound)

has_multiple_parameters Logical, indicating if the deterministic particle requires multiple pa-
rameter sets in a list as inputs, and if it it will produce a vector of likelihoods the same length
(read only). The parameter sets may or may not use the same data (see has_multiple_data).

has_multiple_data Logical, indicating if the deterministic particle simultaneously calculates the
likelihood for multiple parameter sets (read only). If TRUE, has_multiple_parameters will
always be TRUE.

n_parameters The number of parameter sets used by this deterministic particle (read only). The
returned vector of likelihoods will be this length, and if has_multiple_parameters is FALSE
this will be 1.

n_data The number of data sets used by this deterministic particle (read only). This will either be
1 or the same value as n_parameters.

Methods

Public methods:
• particle_deterministic$new()

• particle_deterministic$run()

• particle_deterministic$run_begin()

• particle_deterministic$state()

• particle_deterministic$history()

• particle_deterministic$restart_state()

• particle_deterministic$inputs()

• particle_deterministic$set_n_threads()

16 particle_deterministic

Method new(): Create the particle filter

Usage:
particle_deterministic$new(
data,
model,
compare,
index = NULL,
initial = NULL,
constant_log_likelihood = NULL,
n_threads = 1L,
n_parameters = NULL,
stochastic_schedule = NULL,
ode_control = NULL

)

Arguments:
data The data set to be used for the particle filter, created by particle_filter_data(). This

is essentially a data.frame() with at least columns time_start and time_end, along
with any additional data used in the compare function, and additional information about
how your steps relate to time.

model A stochastic model to use. Must be a dust_generator object.
compare A comparison function. Must take arguments state, observed and pars as argu-

ments (though the arguments may have different names). state is the simulated model
state (a matrix with as many rows as there are state variables and as many columns as there
are particles, data is a list of observed data corresponding to the current time’s row in
the data object provided here in the constructor. pars is any additional parameters passed
through to the comparison function (via the pars argument to $run).

index An index function. This is used to compute the "interesting" indexes of your model. It
must be a function of one argument, which will be the result of calling the $info() method
on your model. It should return a list with elements run (indices to return at the end of
each run, passed through to your compare function) and state (indices to return if saving
state). These indices can overlap but do not have to. This argument is optional but using it
will likely speed up your simulation if you have more than a few states as it will reduce the
amount of memory copied back and forth.

initial A function to generate initial conditions. If given, then this function must accept 3
arguments: info (the result of calling $info() as for index), n_particles (the number of
particles that the particle filter is using) and pars (parameters passed in in the $run method
via the pars argument). It must return a list, which can have the elements state (initial
model state, passed to the particle filter - either a vector or a matrix, and overriding the initial
conditions provided by your model) and time (the initial time, overriding the first time step
of your data - this must occur within your first epoch in your data provided to the construc-
tor, i.e., not less than the first element of time_start and not more than time_end). Your
function can also return a vector or matrix of state and not alter the starting time, which
is equivalent to returning list(state = state, time = NULL). (TODO: this no longer is
allowed, and the docs might be out of date?)

constant_log_likelihood An optional function, taking the model parameters, that computes
the constant part of the log-likelihood value (if any). You can use this where your likelihood
depends both on the time series (via data) but also on some non-temporal data. You should

particle_deterministic 17

bind any non-parameter dependencies into this closure. This is applied at the beginning
of the filter run, so represents the initial condition of the marginal log likelihood value
propagated by the process.

n_threads Number of threads to use when running the simulation. Defaults to 1, and should
not be set higher than the number of cores available to the machine. This currently has no
effect as the simulation will be run in serial on a single particle for now.

n_parameters Number of parameter sets required. This, along with data, controls the inter-
pretation of how the deterministic particle, and importantly will add an additional dimension
to most outputs (scalars become vectors, vectors become matrices etc).

stochastic_schedule Vector of times to perform stochastic updates, for continuous time
models. Note that despite the name, these will be applied deterministically (i.e., replac-
ing the stochastic draw with its expectation).

ode_control Tuning control for the ODE stepper, for continuous time (ODE) models

Method run(): Run the deterministic particle filter

Usage:
particle_deterministic$run(
pars = list(),
save_history = FALSE,
save_restart = NULL,
min_log_likelihood = -Inf

)

Arguments:

pars A list representing parameters. This will be passed as the pars argument to your model,
to your compare function, and (if using) to your initial function. It must be an R list
(not vector or NULL) because that is what a dust model currently requires on initialisation
or $reset - we may relax this later. You may want to put your observation and initial
parameters under their own keys (e.g., pars$initial$whatever), but this is up to you.
Extra keys are silently ignored by dust models.

save_history Logical, indicating if the history of all particles should be saved. If saving
history, then it can be queried later with the $history method on the object.

save_restart An integer vector of time points to save restart infomation for. Not currently
supported.

min_log_likelihood Not currently supported, exists to match the inteface with particle_filter.
Providing a value larger than -Inf will cause an error.

Returns: A single numeric value representing the log-likelihood (-Inf if the model is impossi-
ble)

Method run_begin(): Begin a deterministic run. This is part of the "advanced" interface;
typically you will want to use $run() which provides a user-facing wrapper around this function.
Once created with $run_begin(), you should take as many steps as needed with $step().

Usage:
particle_deterministic$run_begin(
pars,
save_history = FALSE,
save_restart = NULL,

18 particle_deterministic

min_log_likelihood = -Inf
)

Arguments:
pars A list representing parameters. See $run_many() for details (and not $run())
save_history Logical, indicating if the history of all particles should be saved. See $run()

for details.
save_restart Times to save restart state at. See $run() for details.
min_log_likelihood Not currently supported, exists to match the inteface with particle_filter.

Providing a value larger than -Inf will cause an error.

Returns: An object of class particle_deterministic_state, with methods step and end.
This interface is still subject to change.

Method state(): Extract the current model state, optionally filtering. If the model has not yet
been run, then this method will throw an error. Returns a matrix with the number of rows being
the number of model states, and the number of columns being the number of particles.

Usage:
particle_deterministic$state(index_state = NULL)

Arguments:
index_state Optional vector of states to extract

Method history(): Extract the particle trajectories. Requires that the model was run with
save_history = TRUE, which does incur a performance cost. This method will throw an error if
the model has not run, or was run without save_history = TRUE. Returns a 3d array with dimen-
sions corresponding to (1) model state, filtered by index$run if provided, (2) particle (following
index_particle if provided), (3) time point.

Usage:
particle_deterministic$history(index_particle = NULL)

Arguments:
index_particle Optional vector of particle indices to return. If NULL we return all particles’

histories.

Method restart_state(): Return the full particle filter state at points back in time that were
saved with the save_restart argument to $run(). If available, this will return a 3d array, with
dimensions representing (1) particle state, (2) particle index, (3) time point. If multiple parameters
are used then returns a 4d array, with dimensions representing (1) particle state, (2) particle index,
(3) parameter, (4) time point. This could be quite large, especially if you are using the index
argument to create the particle filter and return a subset of all state generally. In the stochastic
version, this is different the saved trajectories returned by $history() because earlier saved state
is not filtered by later filtering, but in the deterministic model we run with a single particle so it is
the same.

Usage:
particle_deterministic$restart_state(
index_particle = NULL,
save_restart = NULL,
restart_match = FALSE

)

particle_deterministic_state 19

Arguments:

index_particle Optional vector of particle indices to return. If NULL we return all particles’
states. Practically because the only valid value of index_particle is "1", this has no effect
and it is included primarily for compatibility with the stochastic interface.

Method inputs(): Return a list of inputs used to configure the deterministic particle filter.
These correspond directly to the argument names for the constructor and are the same as the input
arguments.

Usage:
particle_deterministic$inputs()

Method set_n_threads(): Set the number of threads used by the particle filter (and dust model)
after creation. This can be used to allocate additional (or subtract excess) computing power from
the deterministic filter Returns (invisibly) the previous value.

Usage:
particle_deterministic$set_n_threads(n_threads)

Arguments:

n_threads The new number of threads to use. You may want to wrap this argument in dust::dust_openmp_threads()
in order to verify that you can actually use the number of threads requested (based on envi-
ronment variables and OpenMP support).

particle_deterministic_state

Deterministic particle state

Description

Deterministic particle internal state. This object is not ordinarily constructed directly by users,
but via the $run_begin method to particle_deterministic. It provides an advanced interface to the
deterministic particle that allows partially running over part of the time trajectory.

This state object has a number of public fields that you can read but must not write (they are not
read-only so you could write them, but don’t).

Public fields

model The dust model being simulated

history The particle history, if created with save_history = TRUE.

restart_state Full model state at a series of points in time, if the model was created with non-
NULL save_restart. This is a 3d array as described in particle_filter

log_likelihood The log-likelihood so far. This starts at 0 when initialised and accumulates value
for each step taken.

current_time_index The index of the last completed step.

20 particle_deterministic_state

Methods

Public methods:
• particle_deterministic_state$new()

• particle_deterministic_state$run()

• particle_deterministic_state$step()

• particle_deterministic_state$fork_multistage()

Method new(): Initialise the deterministic particle state. Ordinarily this should not be called by
users, and so arguments are barely documented.

Usage:
particle_deterministic_state$new(
pars,
generator,
model,
data,
data_split,
times,
has_multiple_parameters,
n_threads,
initial,
index,
compare,
constant_log_likelihood,
save_history,
save_restart,
stochastic_schedule,
ode_control

)

Arguments:

pars Parameters for a single phase
generator A dust generator object
model If the generator has previously been initialised
data A particle_filter_data data object
data_split The same data as data but split by step
times A matrix of time step beginning and ends
has_multiple_parameters Compute multiple likelihoods at once?
n_threads The number of threads to use
initial Initial condition function (or NULL)
index Index function (or NULL)
compare Compare function
constant_log_likelihood Constant log likelihood function
save_history Logical, indicating if we should save history
save_restart Vector of time steps to save restart at
stochastic_schedule Vector of times to perform stochastic updates

particle_filter 21

ode_control Tuning control for stepper

Method run(): Run the deterministic particle to the end of the data. This is a convenience
function around $step() which provides the correct value of time_index

Usage:
particle_deterministic_state$run()

Method step(): Take a step with the deterministic particle. This moves the system forward one
step within the data (which may correspond to more than one step with your model) and returns
the likelihood so far.

Usage:
particle_deterministic_state$step(time_index)

Arguments:

time_index The step index to move to. This is not the same as the model step, nor time, so be
careful (it’s the index within the data provided to the filter). It is an error to provide a value
here that is lower than the current step index, or past the end of the data.

Method fork_multistage(): Create a new deterministic_particle_state object based on
this one (same model, position in time within the data) but with new parameters, to support the
"multistage particle filter".

Usage:
particle_deterministic_state$fork_multistage(model, pars, transform_state)

Arguments:

model A model object
pars New model parameters
transform_state A function to transform the model state from the old to the new parameter

set. See multistage_epoch() for details.

particle_filter Particle filter

Description

Create a particle_filter object for running and interacting with a particle filter. A higher-level
interface will be implemented later.

Public fields

model The dust model generator being simulated (cannot be re-bound)

n_particles Number of particles used (read only)

has_multiple_parameters Logical, indicating if the particle filter requires multiple parameter
sets in a list as inputs, and if it it will produce a vector of likelihoods the same length (read
only). The parameter sets may or may not use the same data (see has_multiple_data).

22 particle_filter

has_multiple_data Logical, indicating if the particle filter simultaneously calculates the likeli-
hood for multiple parameter sets (read only). If TRUE, has_multiple_parameters will al-
ways be TRUE.

n_parameters The number of parameter sets used by this particle filter (read only). The returned
vector of likelihood will be this length, and if has_multiple_parameters is FALSE this will
be 1.

n_data The number of data sets used by this particle filter (read only). This will either be 1 or the
same value as n_parameters.

Methods

Public methods:

• particle_filter$new()

• particle_filter$run()

• particle_filter$run_begin()

• particle_filter$state()

• particle_filter$history()

• particle_filter$ode_statistics()

• particle_filter$restart_state()

• particle_filter$inputs()

• particle_filter$set_n_threads()

Method new(): Create the particle filter

Usage:
particle_filter$new(
data,
model,
n_particles,
compare,
index = NULL,
initial = NULL,
constant_log_likelihood = NULL,
n_threads = 1L,
seed = NULL,
n_parameters = NULL,
gpu_config = NULL,
stochastic_schedule = NULL,
ode_control = NULL

)

Arguments:

data The data set to be used for the particle filter, created by particle_filter_data(). This
is essentially a data.frame() with at least columns time_start and time_end, along
with any additional data used in the compare function, and additional information about
how your dust time steps relate to a more interpretable measure of model time.

model A stochastic model to use. Must be a dust_generator object.

particle_filter 23

n_particles The number of particles to simulate
compare A comparison function. Must take arguments state, observed and pars as argu-

ments (though the arguments may have different names). state is the simulated model
state (a matrix with as many rows as there are state variables and as many columns as
there are particles, data is a list of observed data corresponding to the current time’s
row in the data object provided here in the constructor. pars is any additional parame-
ters passed through to the comparison function (via the pars argument to $run). Alterna-
tively, compare can be NULL if your model provides a built-in compile compare function (if
model$public_methods$has_compare() is TRUE), which may be faster.

index An index function. This is used to compute the "interesting" indexes of your model. It
must be a function of one argument, which will be the result of calling the $info() method
on your model. It should return a list with elements run (indices to return at the end of
each run, passed through to your compare function) and state (indices to return if saving
state). These indices can overlap but do not have to. This argument is optional but using it
will likely speed up your simulation if you have more than a few states as it will reduce the
amount of memory copied back and forth.

initial A function to generate initial conditions. If given, then this function must accept 3
arguments: info (the result of calling $info() as for index), n_particles (the number of
particles that the particle filter is using) and pars (parameters passed in in the $run method
via the pars argument). It must return a list, which can have the elements state (initial
model state, passed to the particle filter - either a vector or a matrix, and overriding the
initial conditions provided by your model) and time (the initial time step, overriding the
first time step of your data - this must occur within your first epoch in your data provided
to the constructor, i.e., not less than the first element of time_start and not more than
time_end). Your function can also return a vector or matrix of state and not alter the
starting time step, which is equivalent to returning list(state = state, time = NULL).

constant_log_likelihood An optional function, taking the model parameters, that computes
the constant part of the log-likelihood value (if any). You can use this where your likelihood
depends both on the time series (via data) but also on some non-temporal data. You should
bind any non-parameter dependencies into this closure. This is applied at the beginning
of the filter run, so represents the initial condition of the marginal log likelihood value
propagated by the filter.

n_threads Number of threads to use when running the simulation. Defaults to 1, and should
not be set higher than the number of cores available to the machine.

seed Seed for the random number generator on initial creation. Can be NULL (to initialise using
R’s random number generator), a positive integer, or a raw vector - see dust::dust and
dust::dust_rng for more details. Note that the random number stream is unrelated from
R’s random number generator, except for initialisation with seed = NULL.

n_parameters Number of parameter sets required. This, along with data, controls the inter-
pretation of how the particle filter, and importantly will add an additional dimension to most
outputs (scalars become vectors, vectors become matrices etc).

gpu_config GPU configuration, typically an integer indicating the device to use, where the
model has GPU support. An error is thrown if the device id given is larger than those
reported to be available (note that CUDA numbers devices from 0, so that ’0’ is the first de-
vice, so on). See the method $gpu_info() for available device ids; this can be called before
object creation as model$public_methods$gpu_info(). For additional control, provide a
list with elements device_id and run_block_size. Further options (and validation) of this
list will be added in a future version!

24 particle_filter

stochastic_schedule Vector of times to perform stochastic updates, for continuous time
models.

ode_control Tuning control for the ODE stepper, for continuous time (ODE) models

Method run(): Run the particle filter

Usage:
particle_filter$run(
pars = list(),
save_history = FALSE,
save_restart = NULL,
min_log_likelihood = NULL

)

Arguments:

pars A list representing parameters. This will be passed as the pars argument to your model,
to your compare function, and (if using) to your initial function. It must be an R list
(not vector or NULL) because that is what a dust model currently requires on initialisation
or $reset - we may relax this later. You may want to put your observation and initial
parameters under their own keys (e.g., pars$initial$whatever), but this is up to you.
Extra keys are silently ignored by dust models.

save_history Logical, indicating if the history of all particles should be saved. If saving
history, then it can be queried later with the $history method on the object.

save_restart An integer vector of time points to save restart infomation for. These are in
terms of your underlying time variable (the time column in particle_filter_data())
not in terms of time steps. The state will be saved after the particle filtering operation (i.e.,
at the end of the step).

min_log_likelihood Optionally, a numeric value representing the smallest likelihood we are
interested in. If given and the particle filter drops below this number, then we terminate
early and return -Inf. In this case, history and final state cannot be returned from the filter.
This is primarily intended for use with pmcmc where we can avoid computing likelihoods
that will certainly be rejected. Only suitable for use where log-likelihood increments (with
the compare function) are always negative. This is the case if you use a normalised discrete
distribution, but not necessarily otherwise. If using a multi-parameter filter this can be a
single number (in which case the exit is when the sum of log-likelihoods drops below this
threshold) or a vector of numbers the same length as pars (in which case exit occurs when
all numbers drop below this threshold).

Returns: A single numeric value representing the log-likelihood (-Inf if the model is impossi-
ble)

Method run_begin(): Begin a particle filter run. This is part of the "advanced" interface for the
particle filter; typically you will want to use $run() which provides a user-facing wrapper around
this function. Once created with $run_begin(), you should take as many steps as needed with
$step().

Usage:
particle_filter$run_begin(
pars = list(),
save_history = FALSE,

particle_filter 25

save_restart = NULL,
min_log_likelihood = NULL

)

Arguments:

pars A list representing parameters. See $run() for details.
save_history Logical, indicating if the history of all particles should be saved. See $run()

for details.
save_restart Times to save restart state at. See $run() for details.
min_log_likelihood Optionally, a numeric value representing the smallest likelihood we are

interested in. See $run() for details.

Returns: An object of class particle_filter_state, with methods step and end. This
interface is still subject to change.

Method state(): Extract the current model state, optionally filtering. If the model has not yet
been run, then this method will throw an error. Returns a matrix with the number of rows being
the number of model states, and the number of columns being the number of particles.

Usage:
particle_filter$state(index_state = NULL)

Arguments:

index_state Optional vector of states to extract

Method history(): Extract the particle trajectories. Requires that the model was run with
save_history = TRUE, which does incur a performance cost. This method will throw an error if
the model has not run, or was run without save_history = TRUE. Returns a 3d array with dimen-
sions corresponding to (1) model state, filtered by index$run if provided, (2) particle (following
index_particle if provided), (3) time point. If using a multi-parameter filter then returns a 4d
array with dimensions corresponding to (1) model state, (2) particle, (3) parameter, (4) time point.

Usage:
particle_filter$history(index_particle = NULL)

Arguments:

index_particle Optional vector of particle indices to return. If using a multi-parameter filter
then a vector will be replicated to a matrix with number of columns equal to number of
parameters, otherwise a matrix can be supplied. If NULL we return all particles’ histories.

Method ode_statistics(): Fetch statistics about steps taken during the integration, by call-
ing through to the $statistics() method of the underlying model. This is only available for
continuous time (ODE) models, and will error if used with discrete time models.

Usage:
particle_filter$ode_statistics()

Method restart_state(): Return the full particle filter state at points back in time that were
saved with the save_restart argument to $run(). If available, this will return a 3d array, with
dimensions representing (1) particle state, (2) particle index, (3) time point. If multiple parameters
are used then returns a 4d array, with dimensions representing (1) particle state, (2) particle index,
(3) parameter set, (4) time point. This could be quite large, especially if you are using the index

26 particle_filter

argument to create the particle filter and return a subset of all state generally. It is also different to
the saved trajectories returned by $history() because earlier saved state is not filtered by later
filtering (in the history we return the tree of history representing the histories of the final particles,
here we are returning all particles at the requested point, regardless if they appear in the set of
particles that make it to the end of the simulation).

Usage:
particle_filter$restart_state(
index_particle = NULL,
save_restart = NULL,
restart_match = FALSE

)

Arguments:
index_particle Optional vector of particle indices to return. If NULL we return all particles’

states.

Method inputs(): Return a list of inputs used to configure the particle filter. These correspond
directly to the argument names for the particle filter constructor and are the same as the input
argument with the exception of seed, which is the state of the rng if it has been used (this can be
used as a seed to restart the model).

Usage:
particle_filter$inputs()

Method set_n_threads(): Set the number of threads used by the particle filter (and dust model)
after creation. This can be used to allocate additional (or subtract excess) computing power from
a particle filter. Returns (invisibly) the previous value.

Usage:
particle_filter$set_n_threads(n_threads)

Arguments:
n_threads The new number of threads to use. You may want to wrap this argument in dust::dust_openmp_threads()

in order to verify that you can actually use the number of threads requested (based on envi-
ronment variables and OpenMP support).

Examples

A basic SIR model included in the dust package
gen <- dust::dust_example("sir")

Some data that we will fit to, using 1 particle:
sir <- gen$new(pars = list(), time = 0, n_particles = 1)
dt <- 1 / 4
day <- seq(1, 100)
incidence <- rep(NA, length(day))
true_history <- array(NA_real_, c(5, 1, 101))
true_history[, 1, 1] <- sir$state()
for (i in day) {

state_start <- sir$state()
sir$run(i / dt)
state_end <- sir$state()

particle_filter_data 27

true_history[, 1, i + 1] <- state_end
Reduction in S
incidence[i] <- state_start[1, 1] - state_end[1, 1]

}

Convert this into our required format:
data_raw <- data.frame(day = day, incidence = incidence)
data <- particle_filter_data(data_raw, "day", 4, 0)

A comparison function
compare <- function(state, observed, pars = NULL) {

if (is.null(pars$exp_noise)) {
exp_noise <- 1e6

} else {
exp_noise <- pars$exp_noise

}
incidence_modelled <- state[1,]
incidence_observed <- observed$incidence
lambda <- incidence_modelled +

rexp(length(incidence_modelled), exp_noise)
dpois(incidence_observed, lambda, log = TRUE)

}

Construct the particle_filter object with 100 particles
p <- particle_filter$new(data, gen, 100, compare)
p$run(save_history = TRUE)

Our simulated trajectories, with the "real" data superimposed
history <- p$history()
matplot(data_raw$day, t(history[1, , -1]), type = "l",

xlab = "Time", ylab = "State",
col = "#ff000022", lty = 1, ylim = range(history))

matlines(data_raw$day, t(history[2, , -1]), col = "#ffff0022", lty = 1)
matlines(data_raw$day, t(history[3, , -1]), col = "#0000ff22", lty = 1)
matpoints(data_raw$day, t(true_history[1:3, , -1]), pch = 19,

col = c("red", "yellow", "blue"))

particle_filter_data Prepare data for use with particle filter

Description

Prepare data for use with the particle_filter. This function is required to use the particle filter
as helps arrange data and be explicit about the off-by-one errors that can occur. It takes as input
your data to compare against a model, including some measure of "time". We need to convert this
time into model time steps (see Details).

Usage

particle_filter_data(data, time, rate, initial_time = NULL, population = NULL)

28 particle_filter_data

Arguments

data A data.frame() of data

time The name of a column within data that represents your measure of time. This
column must be integer-like. To avoid confusion, this cannot be called step,
time, or model_time.

rate The number of model "time steps" that occur between each time point (in model
time time). This must also be integer-like for discrete time models and must be
NULL for continuous time models.

initial_time An initial time to start the model from. This should always be provided, and
must be provided for continuous time models. For discrete time models, this is
expressed in model time. It must be a non-negative integer and must be at most
equal to the first value of the time column, minus 1 (i.e., data[[time]] - 1).
For historical reasons if not given we take the first value of the time column
minus one, but with a warning - this behaviour will be removed in a future
version of mcstate.

population Optionally, the name of a column within data that represents different popula-
tions. Must be a factor.

Details

We require that the time variable increments in unit steps; this may be relaxed in future to even
steps, or possibly irregular steps, but for now this assumption is required. We assume that the data
in the first column is recorded at the end of a period of 1 time unit. So if you have in the first column
t = 10, data = 100 we assume that the model steps from t = 9 to to t = 10 and at that period the
data has value 100.

For continuous time models, time is simple to think about; time is continuous (and real-valued) and
really any time is acceptable. For discrete time models there are two correlated measures of time we
need to consider - (1) the dust "time step", a non-negative integer value that increases in unit steps,
and (2) the "model time" which is related to the dust time step based on the rate parameter here as
<model time> = <dust time> * <rate>. For a concrete example, consider a model where we
want to think in terms of days, but which we take 10 steps per day. Time step 0 and model time 0
are the same, but day 1 occurs at step 10, day 15 at step 150 and so on.

Value

If population is NULL, a data.frame with new columns time_start and time_end (required by
particle_filter), along side all previous data except for the time variable, which is replaced by
new <time>_start and <time>_end columns. If population is not NULL then a named list of
data.frames as described above where each element represents populations in the order specified in
the data.

Examples

d <- data.frame(day = 5:20, y = runif(16))
mcstate::particle_filter_data(d, "day", rate = 4, initial_time = 4)

If providing an initial day, then the first epoch of simulation

particle_filter_initial 29

will be longer (see the first row)
mcstate::particle_filter_data(d, "day", rate = 4, initial_time = 0)

If including populations:
d <- data.frame(day = 5:20, y = runif(16),

population = factor(rep(letters[1:2], each = 16)))
mcstate::particle_filter_data(d, "day", 4, 0, "population")

particle_filter_initial

Create restart initial state

Description

Create a suitable initial condition function from a set of restart state. This takes care of a few
bookkeping and serialisation details and returns a function appropriate to pass to particle_filter as
initial.

Usage

particle_filter_initial(state)

Arguments

state A matrix of state (rows are different states, columns are different realisations).
This is the form of a slice pulled from a restart.

Value

A function with arguments info, n_particles and pars that will sample, with replacement, a
matrix of state suitable as a starting point for a particle filter. The info and pars arguments are
ignored.

particle_filter_state Particle filter state

Description

Particle filter internal state. This object is not ordinarily constructed directly by users, but via the
$run_begin method to particle_filter. It provides an advanced interface to the particle filter that
allows partially running the particle filter over part of the time trajectory.

This state object has a number of public fields that you can read but must not write (they are not
read-only so you could write them, but don’t).

30 particle_filter_state

Public fields

model The dust model being simulated

history The particle history, if created with save_history = TRUE. This is an internal format
subject to

restart_state Full model state at a series of points in time, if the model was created with non-
NULL save_restart. This is a 3d (or greater) array as described in particle_filter

log_likelihood The log-likelihood so far. This starts at 0 when initialised and accumulates value
for each step taken.

log_likelihood_step The log-likelihood attributable to the last step (i.e., the contribution to
log_likelihood made on the last call to $step().

current_time_index The index of the last completed step.

Methods

Public methods:
• particle_filter_state$new()

• particle_filter_state$run()

• particle_filter_state$step()

• particle_filter_state$fork_multistage()

• particle_filter_state$fork_smc2()

Method new(): Initialise the particle filter state. Ordinarily this should not be called by users,
and so arguments are barely documented.

Usage:
particle_filter_state$new(
pars,
generator,
model,
data,
data_split,
times,
n_particles,
has_multiple_parameters,
n_threads,
initial,
index,
compare,
constant_log_likelihood,
gpu_config,
seed,
min_log_likelihood,
save_history,
save_restart,
stochastic_schedule,
ode_control

)

particle_filter_state 31

Arguments:

pars Parameters for a single phase
generator A dust generator object
model If the generator has previously been initialised
data A particle_filter_data data object
data_split The same data as data but split by step
times A matrix of time step beginning and ends
n_particles Number of particles to use
has_multiple_parameters Compute multiple likelihoods at once?
n_threads The number of threads to use
initial Initial condition function (or NULL)
index Index function (or NULL)
compare Compare function
constant_log_likelihood Constant log likelihood function
gpu_config GPU configuration, passed to generator

seed Initial RNG seed
min_log_likelihood Early termination control
save_history Logical, indicating if we should save history
save_restart Vector of time steps to save restart at
stochastic_schedule Vector of times to perform stochastic updates
ode_control Tuning control for stepper

Method run(): Run the particle filter to the end of the data. This is a convenience function
around $step() which provides the correct value of time_index

Usage:
particle_filter_state$run()

Method step(): Take a step with the particle filter. This moves the particle filter forward one
step within the data (which may correspond to more than one step with your model) and returns
the likelihood so far.

Usage:
particle_filter_state$step(time_index, partial = FALSE)

Arguments:

time_index The step index to move to. This is not the same as the model step, nor time, so be
careful (it’s the index within the data provided to the filter). It is an error to provide a value
here that is lower than the current step index, or past the end of the data.

partial Logical, indicating if we should return the partial likelihood, due to this step, rather
than the full likelihood so far.

Method fork_multistage(): Create a new particle_filter_state object based on this one
(same model, position in time within the data) but with new parameters, to support the "multistage
particle filter". Unlike fork_smc2, here the parameters may imply a different model shape and
arbitrary transformations of the state are allowed. The model is not rerun to the current point, just
transformed at that point.

32 pmcmc

Usage:
particle_filter_state$fork_multistage(model, pars, transform_state)

Arguments:

model A model object (or NULL)
pars New model parameters
transform_state A function to transform the model state from the old to the new parameter

set. See multistage_epoch() for details.

Method fork_smc2(): Create a new particle_filter_state object based on this one (same
model, position in time within the data) but with new parameters, run up to the date, to support the
smc2() algorithm. To do this, we create a new particle_filter_state with new parameters at
the beginning of the simulation (corresponding to the start of your data or the initial argument
to particle_filter) with your new pars, and then run the filter foward in time until it reaches the
same step as the parent model.

Usage:
particle_filter_state$fork_smc2(pars)

Arguments:

pars New model parameters

pmcmc Run a pmcmc sampler

Description

Run a pmcmc sampler

Usage

pmcmc(pars, filter, initial = NULL, control = NULL)

Arguments

pars A pmcmc_parameters object containing information about parameters (ranges,
priors, proposal kernel, translation functions for use with the particle filter).

filter A particle_filter object

initial Optional initial starting point. If given, it must be compatible with the param-
eters given in pars, and must be valid against your prior. You can use this to
override the initial conditions saved in your pars object. You can provide ei-
ther a vector of initial conditions, or a matrix with n_chains columns to use a
different starting point for each chain.

control A pmcmc_control object which will control how the MCMC runs, including the
number of steps etc.

pmcmc_chains_prepare 33

Details

This is a basic Metropolis-Hastings MCMC sampler. The filter is run with a set of parameters to
evaluate the likelihood. A new set of parameters is proposed, and these likelihoods are compared,
jumping with probability equal to their ratio. This is repeated for n_steps proposals.

While this function is called pmcmc and requires a particle filter object, there’s nothing special about
it for particle filtering. However, we may need to add things in the future that make assumptions
about the particle filter, so we have named it with a "p".

Value

A mcstate_pmcmc object containing pars (sampled parameters) and probabilities (log prior, log
likelihood and log posterior values for these probabilities). Two additional fields may be present:
state (if return_state was TRUE), containing the final state of a randomly selected particle at the
end of the simulation, for each step (will be a matrix with as many rows as your state has variables,
and as n_steps + 1 columns corresponding to each step). trajectories will include a 3d array of
particle trajectories through the simulation (if return_trajectories was TRUE).

pmcmc_chains_prepare pMCMC with manual chain scheduling

Description

Run a pMCMC, with sensible random number behaviour, but schedule execution of the chains
yourself. Use this if you want to distribute chains over (say) the nodes of an HPC system.

Usage

pmcmc_chains_prepare(path, pars, filter, control, initial = NULL)

pmcmc_chains_run(chain_id, path, n_threads = NULL)

pmcmc_chains_collect(path)

pmcmc_chains_cleanup(path)

Arguments

path The path to use to exchange inputs and results. You can use a temporary direc-
tory or a different path (relative or absolute). Several rds files will be created. It
is strongly recommended not to use .

pars A pmcmc_parameters object containing information about parameters (ranges,
priors, proposal kernel, translation functions for use with the particle filter).

filter A particle_filter object

control A pmcmc_control object which will control how the MCMC runs, including the
number of steps etc.

34 pmcmc_combine

initial Optional initial starting point. If given, it must be compatible with the param-
eters given in pars, and must be valid against your prior. You can use this to
override the initial conditions saved in your pars object. You can provide ei-
ther a vector of initial conditions, or a matrix with n_chains columns to use a
different starting point for each chain.

chain_id The integer identifier of the chain to run

n_threads Optional thread count, overriding the number set in the control. This will be
useful where preparing the threads on a machine with one level of resource and
running it on another.

Details

Basic usage will look like

path <- mcstate::pmcmc_chains_prepare(tempfile(), pars, filter, control)
for (i in seq_len(control$n_chains)) {

mcstate::pmcmc_chains_run(i, path)
}
samples <- mcstate::pmcmc_chains_collect(path)
mcstate::pmcmc_chains_cleanup(path)

You can safely parallelise (or not) however you like at the point where the loop is (even across other
machines) and get the same outputs regardless.

pmcmc_combine Combine pmcmc samples

Description

Combine multiple pmcmc() samples into one object

Usage

pmcmc_combine(..., samples = list(...))

Arguments

... Arguments representing pmcmc() sample, i.e., mcstate_pmcmc objects. Alter-
natively, pass a list as the argument samples. Names are ignored.

samples A list of mcstate_pmcmc objects. This is often more convenient for program-
ming against than ...

pmcmc_control 35

pmcmc_control Control for the pmcmc

Description

Control for the pmcmc. This function constructs a list of options and does some basic validation to
ensure that the options will work well together. Do not manually change the values in this object.
Do not refer to any argument except n_steps by position as the order of the arguments may change
in future.

Usage

pmcmc_control(
n_steps,
n_chains = 1L,
n_threads_total = NULL,
n_workers = 1L,
rerun_every = Inf,
rerun_random = FALSE,
use_parallel_seed = FALSE,
save_state = TRUE,
save_restart = NULL,
save_trajectories = FALSE,
progress = FALSE,
nested_step_ratio = 1,
nested_update_both = FALSE,
filter_early_exit = FALSE,
restart_match = FALSE,
n_burnin = NULL,
n_steps_retain = NULL,
adaptive_proposal = NULL,
path = NULL

)

Arguments

n_steps Number of MCMC steps to run. This is the only required argument.

n_chains Optional integer, indicating the number of chains to run. If more than one then
we run a series of chains and merge them with pmcmc_combine(). Chains are
run in series, with the same filter if n_workers is 1, or run in parallel otherwise.

n_threads_total

The total number of threads (i.e., cores) the total number of threads/cores to
use. If n_workers is greater than 1 then these threads will be divided evenly
across your workers at first and so n_threads_total must be an even multiple
of n_workers. If n_chains is not a clean multiple of n_workers we will try
and allocate the leftover threads evenly across the last wave of chains. This

36 pmcmc_control

value must be provided if n_workers is given, but is optional otherwise - if
given it overrides the value in the particle filter.

n_workers Number of "worker" processes to use to run chains in parallel. This must be at
most n_chains and is recommended to be a divisor of n_chains. If n_workers
is 1, then chains are run in series (i.e., one chain after the other). See the parallel
vignette (vignette("parallelisation", package = "mcstate")) for more de-
tails about this approach.

rerun_every Optional integer giving the frequency at which we should rerun the particle filter
on the current "accepted" state. The default for this (Inf) will never rerun this
point, but if you set to 100, then every 100 steps we run the particle filter on both
the proposed and previously accepted point before doing the comparison. This
may help "unstick" chains, at the cost of some bias in the results.

rerun_random Logical, controlling the behaviour of rerunning (when rerun_every is finite).
The default value of FALSE will rerun the filter deterministically at a fixed num-
ber of iterations (given by rerun_every). If TRUE, then we stochastically rerun
each step with probability of 1 / rerun_every. This gives the same expected
number of MCMC steps between reruns but a different pattern.

use_parallel_seed

Logical, indicating if seeds should be configured in the same way as when run-
ning workers in parallel (with n_workers > 1). Set this to TRUE to ensure repro-
ducibility if you use this option sometimes (but not always). This option only
has an effect if n_workers is 1.

save_state Logical, indicating if the state should be saved at the end of the simulation. If
TRUE, then a single randomly selected particle’s state will be collected at the
end of each MCMC step. This is the full state (i.e., unaffected by and index
used in the particle filter) so that the process may be restarted from this point for
projections. If save_trajectories is TRUE the same particle will be selected
for each. The default is TRUE, which will cause n_state * n_steps of data to
be output alongside your results. Set this argument to FALSE to save space, or
use pmcmc_thin() after running the MCMC.

save_restart An integer vector of time points to save restart information for; this is in addition
to save_state (which saves the final model state) and saves the full model state.
It will use the same trajectory as save_state and save_trajectories. Note
that if you use this option you will end up with lots of model states and will
need to process them in order to actually restart the pmcmc or the particle filter
from this state. The integers correspond to the time variable in your filter (see
particle_filter for more information).

save_trajectories

Logical, indicating if the particle trajectories should be saved during the sim-
ulation. If TRUE, then a single randomly selected particle’s trajectory will be
collected at the end of each MCMC step. This is the filtered state (i.e., using
the state component of index provided to the particle filter). If save_state is
TRUE the same particle will be selected for each.

progress Logical, indicating if a progress bar should be displayed, using progress::progress_bar.
nested_step_ratio

Either integer or 1/integer, which specifies the ratio of fixed:varied steps in a
nested pMCMC. For example 3 would run 3 steps proposing fixed parameters

pmcmc_control 37

only and then 1 step proposing varied parameters only; whereas 1/3 would run
3 varied steps for every 1 fixed step. The default value of 1 runs an equal number
of iterations updating the fixed and varied parameters. Sensible choices of this
parameter may depend on the true ratio of fixed:varied parameters or on desired
run-time, for example updating fixed parameters is quicker so more varied steps
could be more efficient.

nested_update_both

If FALSE (default) then alternates between proposing fixed and varied parame-
ter updates according to the ratio in nested_step_ratio. If TRUE then proposes
fixed and varied parameters simultaneously and collectively accepts/rejects them,
nested_step_ratio is ignored.

filter_early_exit

Logical, indicating if we should allow the particle filter to exit early for points
that will not be accepted. Only use this if your log-likelihood never increases
between steps. This will the the case where your likelihood calculation is a sum
of discrete normalised probability distributions, but may not be for continuous
distributions!

restart_match Logical, indicating whether the restart state saved from the particle filter should
match the trajectory saved, otherwise the restart state will be randomly drawn
from the states of the particle filter after filtering to the restart time point.

n_burnin Optionally, the number of points to discard as burnin. This happens separately
to the burnin in pmcmc_thin or pmcmc_sample. See Details.

n_steps_retain Optionally, the number of samples to retain from the n_steps - n_burnin steps.
See Details.

adaptive_proposal

Optionally, control over an adaptive proposal (adaptive_proposal_control). Al-
ternatively FALSE to disable, TRUE to enable defaults. This is only valid for
single-population deterministic models.

path Optional path to save partial pmcmc results in, when using workers. If not given
(or NULL) then a temporary directory is used.

Details

pMCMC is slow and you will want to parallelise it if you possibly can. There are two ways
of doing this which are discussed in some detail in vignette("parallelisation", package =
"mcstate").

Value

A pmcmc_control object, which should not be modified once created.

Thinning the chain at generation

Generally it may be preferable to thin the chains after generation using pmcmc_thin or pmcmc_sample.
However, waiting that long can create memory consumption issues because the size of the trajecto-
ries can be very large. To avoid this, you can thin the chains at generation - this will avoid creating
large trajectory arrays, but will discard some information irretrivably.

38 pmcmc_parameter

If either of the options n_burnin or n_steps_retain are provided, then we will subsample the
chain at generation.

• If n_burnin is provided, then the first n_burnin (of n_steps) samples is discarded. This must
be at most n_steps

• If n_steps_retain is provided, then we evenly sample out of the remaining samples. The
algorithm will try and generate a sensible set here, and will always include the last sample of
n_steps but may not always include the first post-burnin sample. An error will be thrown if a
suitable sampling is not possible (e.g., if n_steps_retain is larger than n_steps - n_burnin

If either of n_burnin or n_steps_retain is provided, the resulting samples object will include the
full set of parameters and probabilities sampled, along with an index showing how they relate to the
filtered samples.

Examples

mcstate::pmcmc_control(1000)

Suppose we have a fairly large node with 16 cores and we want to
run 8 chains. We can use all cores for a single chain and run
the chains sequentially like this:
mcstate::pmcmc_control(1000, n_chains = 8, n_threads_total = 16)

However, on some platforms (e.g., Windows) this may only realise
a 50% total CPU use, in which case you might benefit from
splitting these chains over different worker processes (2-4
workers is likely the largest useful number).
mcstate::pmcmc_control(1000, n_chains = 8, n_threads_total = 16,

n_workers = 4)

pmcmc_parameter Describe single pmcmc parameter

Description

Describe a single parameter for use within the pmcmc. Note that the name is not set here, but will
end up being naturally defined when used with pmcmc_parameters, which collects these together
for use with pmcmc().

Usage

pmcmc_parameter(
name,
initial,
min = -Inf,
max = Inf,
discrete,
integer = FALSE,
prior = NULL,

pmcmc_parameters 39

mean = NULL
)

Arguments

name Name for the parameter (a string)

initial Initial value for the parameter

min Optional minimum value for the parameter (otherwise -Inf). If given, then
initial must be at least this value.

max Optional max value for the parameter (otherwise Inf). If given, then initial
must be at most this value.

discrete Deprecated; use integer instead.

integer Logical, indicating if this parameter is integer. If TRUE then the parameter will
be rounded after a new parameter is proposed.

prior A prior function (if not given an improper flat prior is used - be careful!). It must
be a function that takes a single argument, being the value of this parameter. If
given, then prior(initial) must evaluate to a finite value.

mean Optionally, an estimate of the mean of the parameter. If not given, then we
assume that initial is a reasonable estimate. This is used only in adaptive
mcmc.

Examples

pmcmc_parameter("a", 0.1)

pmcmc_parameters pmcmc_parameters

Description

Construct parameters for use with pmcmc(). This creates a utility object that is used internally to
work with parameters. Most users only need to construct this object, but see the examples for how
it can be used.

Parameter transformations

Unless you have a very simple model, it is highly unlikely that the parameters that you are interested
in performing inference on are the same as the parameters that you might need to initialise your
model.

Due to the nature of mcmc and other inference algorithms, the general assumption is that the infer-
ence parameters will be a simple vector of real values; here each of the parameters elements cor-
responds to one of these. The proposal matrix maps one vector to another via a simple multivariate-
gaussian kernel.

On the other hand, dust models can take a named list of arbitrary data as their input parameters (see
dust::dust_generator). These might include:

40 pmcmc_parameters

• things that are not parameters at all from the perspective of the inference - for example some
quantity that you might vary depending on the region/species/etc you’re running the model for
but that you are not fitting.

• non-scalar quantities that are directly derived from some parameters that you are fitting. As
an example of this, in sircovid, a transmission model of COVID, we take a number of "contact
rates" which apply at different points in time, and generate from this an interpolated series of
contact rates per time step (a very long vector). Other users have needed to generate equilib-
rium solutions to parts of their model and used these at initialisation.

• arbitrary complex inputs to the model, for example weather data, demographic matrices, pop-
ulation contact rate matrices etc. These are all "parameters" from the perspective of a dust
model but not at all from the perspective of the inference process.

To allow for this in a flexible way, mcstate allows a "transform" function, the transform argument
to the constructor. This function maps a named numeric vector of inference parameters to whatever
you need for your dust model. The default value for this function is as.list which just converts the
named vector to a named list, which works well in the example cases here.

When providing a transformation function, you may want to provide a "closure" rather than a top-
level function. This way you can bind additional data into your function. For example, suppose that
you want to use some demographic matrix m in your model, and perform inference on parameters a
and b you might write

make_transform <- function(m) {
function(theta) {
c(list(m = m), as.list(theta))

}
}

and pass this into mcstate::pmcmc_parameters$new, providing parameter definitions only for a
and b. See the examples for full working of this.

Methods

Public methods:
• pmcmc_parameters$new()

• pmcmc_parameters$initial()

• pmcmc_parameters$mean()

• pmcmc_parameters$vcv()

• pmcmc_parameters$names()

• pmcmc_parameters$summary()

• pmcmc_parameters$prior()

• pmcmc_parameters$propose()

• pmcmc_parameters$model()

• pmcmc_parameters$fix()

Method new(): Create the pmcmc_parameters object

Usage:

https://mrc-ide.github.io

pmcmc_parameters 41

pmcmc_parameters$new(parameters, proposal, transform = NULL)

Arguments:

parameters A list of pmcmc_parameter objects, each of which describe a single parameter
in your model. If parameters is named, then these names must match the $name element
of each parameter is used (this is verified).

proposal A square proposal distribution corresponding to the variance-covariance matrix of a
multivariate gaussian distribution used to generate new parameters. It must have the same
number of rows and columns as there are elements in parameters, and if named the names
must correspond exactly to the names in parameters. Because it corresponds to a variance-
covariance matrix it must be symmetric and positive definite.

transform An optional transformation function to apply to your parameter vector immediately
before passing it to the model function. If not given, then as.list is used, as dust models
require this. However, if t you need to generate derived parameters from those being actively
sampled you can do arbitrary transformations here.

Method initial(): Return the initial parameter values as a named numeric vector

Usage:
pmcmc_parameters$initial()

Method mean(): Return the estimate of the mean of the parameters, as set when created (this is
not updated by any fitting!)

Usage:
pmcmc_parameters$mean()

Method vcv(): Return the variance-covariance matrix used for the proposal.

Usage:
pmcmc_parameters$vcv()

Method names(): Return the names of the parameters

Usage:
pmcmc_parameters$names()

Method summary(): Return a data.frame with information about parameters (name, min, max,
and integer).

Usage:
pmcmc_parameters$summary()

Method prior(): Compute the prior for a parameter vector

Usage:
pmcmc_parameters$prior(theta)

Arguments:

theta a parameter vector in the same order as your parameters were defined in (see $names()
for that order.

42 pmcmc_parameters

Method propose(): Propose a new parameter vector given a current parameter vector. This
proposes a new parameter vector given your current vector and the variance-covariance matrix of
your proposal kernel, rounds any integer values, and reflects bounded parameters until they lie
within min:max.

Usage:
pmcmc_parameters$propose(theta, scale = 1, vcv = NULL)

Arguments:
theta a parameter vector in the same order as your parameters were defined in (see $names()

for that order.
scale an optional scaling factor to apply to the proposal distribution. This may be useful in

sampling starting points. The parameter is equivalent to a multiplicative factor applied to
the variance covariance matrix.

vcv A variance covariance matrix of the correct size, overriding the proposal matrix built into
the parameters object. This will be slightly less efficient but allow a different proposal
matrix to be used (e.g., during an adaptive MCMC)

Method model(): Apply the model transformation function to a parameter vector.

Usage:
pmcmc_parameters$model(theta)

Arguments:
theta a parameter vector in the same order as your parameters were defined in (see $names()

for that order.

Method fix(): Set some parameters to fixed values. Use this to reduce the dimensionality of
your system.

Usage:
pmcmc_parameters$fix(fixed)

Arguments:
fixed a named vector of parameters to fix

Examples

Construct an object with two parameters:
pars <- mcstate::pmcmc_parameters$new(

list(mcstate::pmcmc_parameter("a", 0.1, min = 0, max = 1,
prior = function(a) log(a)),

mcstate::pmcmc_parameter("b", 0, prior = dnorm)),
matrix(c(1, 0.5, 0.5, 2), 2, 2))

Initial parameters
p <- pars$initial()
p

Propose a new parameter point
pars$propose(p)

Information about parameters:

pmcmc_parameters_nested 43

pars$names()
pars$summary()

Compute prior
pars$prior(p)

Transform data for your model
pars$model(p)

Above we describe a nontrivial transformation function using a closure
make_transform <- function(m) {

function(theta) {
c(list(m = m), as.list(theta))

}
}

Suppose this is our demographic matrix (note here that the name
need not match that used in the transform)
demographic_matrix <- diag(4)

Construct the parameters as above, but this time passing in the
function that make_transform returns
pars <- mcstate::pmcmc_parameters$new(

list(mcstate::pmcmc_parameter("a", 0.1, min = 0, max = 1,
prior = function(a) log(a)),

mcstate::pmcmc_parameter("b", 0, prior = dnorm)),
matrix(c(1, 0.5, 0.5, 2), 2, 2),
make_transform(demographic_matrix))

Now, as above we start from a position in terms of a and b only:
pars$initial()

But when prepared for the model, our matrix will be set up
pars$model(pars$initial())

pmcmc_parameters_nested

pmcmc_parameters_nested

Description

Construct nested parameters for use with pmcmc(). This creates a utility object that is used internally
to work with parameters that may be fixed and the same for all given populations, or varied and
possibly-different between populations. Most users only need to construct this object, but see the
examples for how it can be used.

Methods

Public methods:

44 pmcmc_parameters_nested

• pmcmc_parameters_nested$new()

• pmcmc_parameters_nested$names()

• pmcmc_parameters_nested$populations()

• pmcmc_parameters_nested$validate()

• pmcmc_parameters_nested$summary()

• pmcmc_parameters_nested$initial()

• pmcmc_parameters_nested$mean()

• pmcmc_parameters_nested$vcv()

• pmcmc_parameters_nested$prior()

• pmcmc_parameters_nested$propose()

• pmcmc_parameters_nested$model()

• pmcmc_parameters_nested$fix()

Method new(): Create the pmcmc_parameters object

Usage:
pmcmc_parameters_nested$new(
parameters,
proposal_varied = NULL,
proposal_fixed = NULL,
populations = NULL,
transform = NULL

)

Arguments:

parameters A list of pmcmc_parameter or pmcmc_varied_parameter objects, each of which
describe a single (possibly-varying) parameter in your model. If parameters is named, then
these names must match the $name element of each parameter that is used (this is verified).

proposal_varied, proposal_fixed Square proposal matrices corresponding to the variance-
covariance matrix of a multivariate gaussian distribution used to generate new varied and
fixed parameters respectively.’. They must have the same number of rows and columns as
there are varied and fixed parameters respectively. The names must correspond exactly to
the names in parameters. Because it corresponds to a variance-covariance matrix it must
be symmetric and positive definite.

populations Specifies the names of the different populations that the varying parameters change
according to. Only required if no pmcmc_varied_parameter objects are included in parameters.
Otherwise population names are taken from those objects.

transform An optional transformation function to apply to your parameter vector immediately
before passing it to the model function. If not given, then as.list is used, as dust models
require this. However, if you need to generate derived parameters from those being actively
sampled you can do arbitrary transformations here.

Method names(): Return the names of the parameters

Usage:
pmcmc_parameters_nested$names(type = "both")

Arguments:

pmcmc_parameters_nested 45

type One of "both" (the default, all parameters), "fixed" (parameters that are shared across
populations) or "varied" (parameters that vary over populations).

Method populations(): Return the names of the populations

Usage:
pmcmc_parameters_nested$populations()

Method validate(): Validate a parameter matrix. This method checks that your matrix has
the expected size (rows according to parameters, columns to populations) and if named that the
names are exactly what is expected. It also verifies that the fixed parameters are same across all
populations.

Usage:
pmcmc_parameters_nested$validate(theta)

Arguments:
theta a parameter matrix

Method summary(): Return a data.frame with information about parameters (name, min, max,
integer, type (fixed or varied) and population)

Usage:
pmcmc_parameters_nested$summary()

Method initial(): Return the initial parameter values as a named matrix with rows corre-
sponding to parameters and columns to populations.

Usage:
pmcmc_parameters_nested$initial()

Method mean(): Return the estimate of the mean of the parameters, as set when created (this is
not updated by any fitting!)

Usage:
pmcmc_parameters_nested$mean(type)

Method vcv(): Return the variance-covariance matrix used for the proposal.

Usage:
pmcmc_parameters_nested$vcv(type)

Method prior(): Compute the prior(s) for a parameter matrix. Returns a named vector with
names corresponding to populations.

Usage:
pmcmc_parameters_nested$prior(theta)

Arguments:
theta a parameter matrix with columns in the same order as $names() and rows in the same

order as $populations().

Method propose(): This proposes a new parameter matrix given your current matrix and
the variance-covariance matrices of the proposal kernels, rounds any integer values, and reflects
bounded parameters until they lie within min:max. Returns matrix with rows corresponding to
parameters and columns to populations (i.e., the same orientation as theta).

46 pmcmc_parameters_nested

Usage:
pmcmc_parameters_nested$propose(theta, type, scale = 1, vcv = NULL)

Arguments:

theta a parameter matrix with rows in the same order as $names() and columns in the same
order as $populations().

type specifies which type of parameters should be proposed, either fixed parameters only
("fixed"), varied only ("varied"), or both ("both") types. For ’fixed’ and ’varied’, param-
eters of the other type are left unchanged.

scale an optional scaling factor to apply to the proposal distribution. This may be useful in
sampling starting points. The parameter is equivalent to a multiplicative factor applied to
the variance covariance matrix.

Method model(): Apply the model transformation function to a parameter matrix.

Usage:
pmcmc_parameters_nested$model(theta)

Arguments:

theta a parameter matrix with rows in the same order as $names() and columns in the same
order as $populations().

Method fix(): Set some parameters to fixed values. Use this to reduce the dimensionality
of your system. Note that this function has an unfortunate name collision - we use "fixed" and
"varied" parameters generally to refer to ones that are fixed across populations or which vary
among populations. However, in the context of this method "fixed" refers to parameters which
will be set to a single value and no longer used in inference.

Usage:
pmcmc_parameters_nested$fix(fixed)

Arguments:

fixed a named vector of parameters to fix

Examples

Construct an object with two varied parameters ('a' and 'b'),
two fixed parameters ('c' and 'd') and two populations ('p1' and 'p2')
parameters <- list(mcstate::pmcmc_varied_parameter("a", c("p1", "p2"), 2),

mcstate::pmcmc_varied_parameter("b", c("p1", "p2"), 2),
mcstate::pmcmc_parameter("c", 3),
mcstate::pmcmc_parameter("d", 4))

proposal_fixed <- diag(2)
proposal_varied <- diag(2) + 1
pars <- mcstate::pmcmc_parameters_nested$new(parameters, proposal_varied,

proposal_fixed)

Initial parameters
p <- pars$initial()
p

Propose a new parameter point

pmcmc_predict 47

pars$propose(p, type = "both")
pars$propose(p, type = "fixed")
pars$propose(p, type = "varied")

Information about parameters:
pars$names()
pars$names("fixed")
pars$names("varied")
pars$summary()

Compute log prior probability, per population
pars$prior(p)

Transform data for your model
pars$model(p)

pmcmc_predict Run predictions from PMCMC

Description

Run predictions from the results of pmcmc(). This function can also be called by running predict()
on the object, using R’s S3 dispatch.

Usage

pmcmc_predict(
object,
times,
prepend_trajectories = FALSE,
n_threads = NULL,
seed = NULL

)

Arguments

object The results of running pmcmc() with return_state = TRUE (without this extra
information, prediction is not possible)

times A vector of time times to return predictions for. The first value must be the final
value run in your simulation. An error will be thrown if you get this value wrong,
look in object$predict$time (or the error message) for the correct value.

prepend_trajectories

Prepend trajectories from the particle filter to the predictions created here.

n_threads The number of threads used in the simulation. If not given, we default to the
value used in the particle filter that was used in the pmcmc.

48 pmcmc_thin

seed The random number seed (see particle_filter). The default value of NULL
will seed the dust random number generator from R’s random number generator.
However, you can pick up from the same RNG stream used in the simulation if
you pass in seed = object$predict$seed. However, do not do this if you are
gong to run pmcmc_predict() multiple times the result will be identical. If
you do want to call predict with this state multiple times you should create a
persistant rng state object (e.g., with dust::dust_rng and perform a "long jump"
between each call.

pmcmc_thin Thin a pmcmc chain

Description

Thin results of running pmcmc(). This function may be useful before using pmcmc_predict(), or
before saving pmcmc output to disk. pmcmc_thin takes every thin’th sample, while pmcmc_sample
randomly selects a total of n_sample samples.

Usage

pmcmc_thin(object, burnin = NULL, thin = NULL)

pmcmc_sample(object, n_sample, burnin = NULL)

Arguments

object Results of running pmcmc()

burnin Optional integer number of iterations to discard as "burn-in". If given then sam-
ples 1:burnin will be excluded from your results. It is an error if this is not a
positive integer or is greater than or equal to the number of samples (i.e., there
must be at least one sample remaining after discarding burnin).

thin Optional integer thinning factor. If given, then every thin’th sample is retained
(e.g., if thin is 10 then we keep samples 1, 11, 21, ...). Note that this can produce
surprising results as it will always select the first sample but not necessarily
always the last.

n_sample The number of samples to draw from object with replacement. This means
that n_sample can be larger than the total number of samples taken (though it
probably should not)

pmcmc_varied_parameter 49

pmcmc_varied_parameter

Describe varying pmcmc parameter

Description

Describe a varying parameter for use within the nested pmcmc. Note that the name is not set here,
but will end up being naturally defined when used with pmcmc_parameters_nested, which collects
these together for use with pmcmc().

Usage

pmcmc_varied_parameter(
name,
populations,
initial,
min = -Inf,
max = Inf,
discrete,
integer = FALSE,
prior = NULL

)

Arguments

name Name for the parameter (a string)

populations The name of the populations for which different values of the parameter are
being estimated for, length n_pop.

initial Initial value(s) for the parameter. Must be either length n_pop or 1, in which
case the same value is assumed for all populations.

min Optional minimum value(s) for the parameter (otherwise -Inf). If given, then
initial must be at least this value. Must be either length n_pop or 1, in which
case the same value is assumed for all populations.

max Optional max value for the parameter (otherwise Inf). If given, then initial
must be at most this value. Must be either length n_pop or 1, in which case the
same value is assumed for all populations.

discrete Deprecated; use integer instead.

integer Logical, indicating if this parameter is integer. If TRUE then the parameter will
be rounded after a new parameter is proposed.

prior A prior function (if not given an improper flat prior is used - be careful!). It must
be a function that takes a single argument, being the value of this parameter. If
given, then prior(initial) must evaluate to a finite value. Must be either
length n_pop or 1, in which case the same value is assumed for all populations.

50 smc2

Examples

mcstate::pmcmc_varied_parameter(
name = "size",
populations = c("Europe", "America"),
initial = c(100, 200),
min = 0,
max = Inf,
integer = TRUE,
prior = list(dnorm, dexp))

smc2 Run SMC^2

Description

Run a SMC^2. This is experimental and subject to change. Use at your own risk.

Usage

smc2(pars, filter, control)

Arguments

pars A smc2_parameters object containing information about parameters (ranges,
priors, proposal kernel, translation functions for use with the particle filter).

filter A particle_filter object

control A smc2_control object to control the behaviour of the algorithm

Value

A smc2_result object, with elements

• pars: a matrix of sampled parameters (n_parameter_set long)

• probabilities: a matrix of probabilities (log_prior, log_likelihood, log_posterior
and weight). The latter is the log posterior normalised over all samples

• statistics: interesting or useful statistics about your sample, including the ess (effective
sample size, over time), acceptance_rate (where a regeneration step was done, the accep-
tance rate), n_particles, n_parameter_sets and n_steps (inputs to the simulation). The
effort field is a rough calculation of the number of particle-filter runs that this run was worth.

Examples

We use an example from dust which implements an epidemiological SIR
(Susceptible-Infected-Recovered) model; see vignette("sir_models")
for more background, as this example follows from the pMCMC example
there

smc2 51

The key tuning here is the number of particles per filter and number
of parameter sets to consider simultaneously. Ordinarily these would
be set (much) higher with an increase in computing time
n_particles <- 42
n_parameter_sets <- 20

Basic epidemiological (Susceptible-Infected-Recovered) model
sir <- dust::dust_example("sir")

Pre-computed incidence data
incidence <- read.csv(system.file("sir_incidence.csv", package = "mcstate"))

Annotate the data so that it is suitable for the particle filter to use
dat <- mcstate::particle_filter_data(incidence, "day", 4, 0)

Subset the output during run
index <- function(info) {

list(run = 5L)
}

The comparison function, used to compare simulated data with observe
data, given the above subset
compare <- function(state, observed, pars) {

exp_noise <- 1e6
incidence_modelled <- state[1L, , drop = TRUE]
incidence_observed <- observed$cases
lambda <- incidence_modelled +
rexp(n = length(incidence_modelled), rate = exp_noise)

dpois(x = incidence_observed, lambda = lambda, log = TRUE)
}

Finally, construct the particle filter:
filter <- mcstate::particle_filter$new(dat, sir, n_particles, compare,

index = index)

To control the smc2 we need to specify the parameters to consider
pars <- mcstate::smc2_parameters$new(

list(
mcstate::smc2_parameter("beta",

function(n) runif(n, 0, 1),
function(x) dunif(x, 0, 1, log = TRUE),
min = 0, max = 1),

mcstate::smc2_parameter("gamma",
function(n) runif(n, 0, 1),
function(x) dunif(x, 0, 1, log = TRUE),
min = 0, max = 1)))

control <- mcstate::smc2_control(n_parameter_sets, progress = TRUE)

Then we run the particle filter
res <- mcstate::smc2(pars, filter, control)

This returns quite a lot of information about the fit, and this will
change in future versions

52 smc2_control

res

Most useful is likely the predict method:
predict(res)

smc2_control Control for SMC2

Description

Control for smc2. This function constructs a list of options and does some basic validation to ensure
that the options will work well together. Do not manually change the values in this object. Do not
refer to any argument except n_parameter_sets by position as the order of the arguments may
change in future.

Usage

smc2_control(
n_parameter_sets,
degeneracy_threshold = 0.5,
covariance_scaling = 0.5,
progress = TRUE,
save_trajectories = FALSE

)

Arguments
n_parameter_sets

The number of replicate parameter sets to simulate at once.
degeneracy_threshold

The degeneracy threshold. Once the effective sample size drops below degeneracy_threshold
* n_parameter_sets the algorithm will rerun simulations from the beginning
of the data and use these to replenish the particles.

covariance_scaling

A scaling factor to update variance covariance matrix of sampled parameters by

progress Logical, indicating if a progress bar should be displayed, using progress::progress_bar.
save_trajectories

Logical, indicating if particle trajectories should be saved during the simulation.

Value

A smc2_control object, which should not be modified once created.

Examples

mcstate::smc2_control(100)

smc2_parameter 53

smc2_parameter Describe single pmcmc parameter

Description

Describe a single parameter for use within the SMC^2. Note that the name is not set here, but will
end up being naturally defined when used with smc2_parameters, which collects these together for
use with smc2().

Usage

smc2_parameter(
name,
sample,
prior,
min = -Inf,
max = Inf,
discrete,
integer = FALSE

)

Arguments

name Name for the parameter (a string)

sample A sampling function; it must take a single argument representing the number
of sampled to be returned. Typically this will be a r probability function corre-
sponding to the sampling version of your prior (e.g., you might use runif and
dunif for sample and prior). If you provide min, max or integer you must
ensure that your function returns values that satisfy these constraints, as this is
not (yet) checked.

prior A prior function. It must be a function that takes a single argument, being the
value of this parameter.

min Optional minimum value for the parameter (otherwise -Inf). If given, then
initial must be at least this value.

max Optional max value for the parameter (otherwise Inf). If given, then initial
must be at most this value.

discrete Deprecated; use integer instead.

integer Logical, indicating if this parameter is an integer. If TRUE then the parameter
will be rounded after a new parameter is proposed.

Examples

mcstate::smc2_parameter("a",
function(n) rnorm(n),
function(x) dnorm(n, log = TRUE))

54 smc2_parameters

smc2_parameters smc2_parameters

Description

Construct parameters for use with smc2(). This creates a utility object that is used internally to
work with parameters. Most users only need to construct this object, but see the examples for how
it can be used.

Methods

Public methods:
• smc2_parameters$new()

• smc2_parameters$sample()

• smc2_parameters$names()

• smc2_parameters$summary()

• smc2_parameters$prior()

• smc2_parameters$propose()

• smc2_parameters$model()

Method new(): Create the smc2_parameters object

Usage:
smc2_parameters$new(parameters, transform = NULL)

Arguments:
parameters A list of smc2_parameter objects, each of which describe a single parameter in

your model. If parameters is named, then these names must match the $name element of
each parameter is used (this is verified).

transform An optional transformation function to apply to your parameter vector immediately
before passing it to the model function. If not given, then as.list is used, as dust models
require this. However, if t you need to generate derived parameters from those being actively
sampled you can do arbitrary transformations here.

Method sample(): Create n independent random parameter vectors (as a matrix with n rows)

Usage:
smc2_parameters$sample(n)

Arguments:
n Number of replicate parameter sets to draw

Method names(): Return the names of the parameters

Usage:
smc2_parameters$names()

Method summary(): Return a data.frame with information about parameters (name, min, max,
and integer).

smc2_parameters 55

Usage:
smc2_parameters$summary()

Method prior(): Compute the prior for a parameter vector

Usage:
smc2_parameters$prior(theta)

Arguments:

theta a parameter vector in the same order as your parameters were defined in (see $names()
for that order.

Method propose(): Propose a new parameter vector given a current parameter vector and
variance covariance matrix. After proposal, this rounds any integer values, and reflects bounded
parameters until they lie within min:max.

Usage:
smc2_parameters$propose(theta, vcv)

Arguments:

theta a parameter vector in the same order as your parameters were defined in (see $names()
for that order).

vcv the variance covariance matrix for the proposal; must be square and have a number of rows
and columns equal to the number of parameters, in the same order as theta.

Method model(): Apply the model transformation function to a parameter vector.

Usage:
smc2_parameters$model(theta)

Arguments:

theta a parameter vector in the same order as your parameters were defined in (see $names()
for that order.

Index

adaptive_proposal_control, 2, 37
array_bind, 4
array_drop, 5
array_flatten, 6, 6, 7
array_reshape, 6, 7
as.list, 12, 40, 41, 44, 54

data.frame, 12
data.frame(), 16, 22, 28
drop, 5
dust::dust, 23
dust::dust_generator, 39
dust::dust_openmp_threads(), 19, 26
dust::dust_rng, 23, 48

if2, 8
if2(), 10, 11
if2_control, 10
if2_control(), 8
if2_parameter, 10, 12
if2_parameters, 8, 10, 11
if2_sample (if2), 8

multistage_epoch, 14
multistage_epoch(), 21, 32
multistage_parameters, 14, 14

particle_deterministic, 15, 19
particle_deterministic_state, 19
particle_filter, 8, 15, 17–19, 21, 27–30,

32, 33, 36, 48, 50
particle_filter_data, 20, 27, 31
particle_filter_data(), 16, 22, 24
particle_filter_initial, 29
particle_filter_state, 29
pmcmc, 24, 32
pmcmc(), 34, 38, 39, 43, 47–49
pmcmc_chains_cleanup

(pmcmc_chains_prepare), 33
pmcmc_chains_collect

(pmcmc_chains_prepare), 33

pmcmc_chains_prepare, 33
pmcmc_chains_run

(pmcmc_chains_prepare), 33
pmcmc_combine, 34
pmcmc_combine(), 35
pmcmc_control, 2, 32, 33, 35
pmcmc_parameter, 38, 41, 44
pmcmc_parameters, 32, 33, 38, 39
pmcmc_parameters_nested, 43, 49
pmcmc_predict, 47
pmcmc_predict(), 48
pmcmc_sample, 37
pmcmc_sample (pmcmc_thin), 48
pmcmc_thin, 37, 48
pmcmc_thin(), 36
pmcmc_varied_parameter, 44, 49
predict(), 47
progress::progress_bar, 10, 36, 52

smc2, 50, 52
smc2(), 32, 53, 54
smc2_control, 50, 52
smc2_parameter, 53, 54
smc2_parameters, 50, 53, 54

56

	adaptive_proposal_control
	array_bind
	array_drop
	array_flatten
	array_reshape
	if2
	if2_control
	if2_parameter
	if2_parameters
	multistage_epoch
	multistage_parameters
	particle_deterministic
	particle_deterministic_state
	particle_filter
	particle_filter_data
	particle_filter_initial
	particle_filter_state
	pmcmc
	pmcmc_chains_prepare
	pmcmc_combine
	pmcmc_control
	pmcmc_parameter
	pmcmc_parameters
	pmcmc_parameters_nested
	pmcmc_predict
	pmcmc_thin
	pmcmc_varied_parameter
	smc2
	smc2_control
	smc2_parameter
	smc2_parameters
	Index

