Package: monty (via r-universe)

September 2, 2024
Title Monte Carlo Models
Version 0.2.3

Description Experimental sources for the next generation of mcstate,
now called 'monty', which will support much of the old mcstate
functionality but new things like better parameter interfaces,
Hamiltonian Monte Carlo, and other features.

License MIT + file LICENSE
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

URL https://mrc-ide.github.io/monty, https://github.com/mrc-ide/monty

BugReports https://github.com/mrc-ide/monty/issues
Imports R6, cli, parallel, rlang
LinkingTo cppll

Suggests cppll, coda, decor, knitr, dust, mockery, mvtnorm, numDeriv,
pkgload, posterior, rmarkdown, testthat (>= 3.0.0), withr

Config/testthat/edition 3

Language en-GB

VignetteBuilder knitr

Remotes mrc-ide/dust

Repository https://mrc-ide.r-universe.dev
RemoteUrl https://github.com/mrc-ide/monty
RemoteRef main

RemoteSha c86a53b45ef7b3f7769ca54f16a770d522feb881

https://mrc-ide.github.io/monty
https://github.com/mrc-ide/monty
https://github.com/mrc-ide/monty/issues

2

monty_differentiation

Contents
monty_differentiation 2
monty_domain_expando e e e e 3
monty_dsl e 4
monty_dsl_distributionso 5
monty_dsl_error_explain e 6
monty_dsl_parse_distributiono L 6
monty_model 7
monty_model_combine 9
monty_model_density L. 10
monty_model_direct_sample 11
monty_model_function 11
monty_model_gradient e 12
monty_model_propertieso 13
monty_ODbServer e 14
monty_packer e e e e 15
100 10) 11 /2 5 4V 17
monty_rng_distributed_state 24
MONtY_INZ_POINLET o v vt vt e e et e e e e e e e e 25
monty_runner_parallel 26
monty_runner_serial L 27
monty_runner_simultaneous Lo e 28
monty_sample e e e e e e 28
monty_sampler_adaptive L L 30
monty_sampler_hmc L Lo 32
monty_sampler_nested_adaptive oL o 33
monty_sampler_nested_random_walk o000 35
monty_sampler_random_walko Lo oL 36
monty_sample_continueo e e 37
with_trace_random e 38
Index 39

monty_differentiation Differentiate expressions

Description

Differentiate expressions in the monty DSL. This function is exported for advanced use, and really
so that we can use it from odin. But it has the potential to be generally useful, so while we’ll tweak
the interface quite a lot over the next while it is fine to use if you can handle some disruption.

Usage

monty_differentiation()

monty_domain_expand 3

Details

R already has support for differentiating expressions using D, which is useful for creating derivatives
of simple functions to pass into non-linear optimisation. We need something a bit more flexible for
differentiating models in the monty DSL (monty_dsl) and also in the related odin DSL.

Value

A list of related objects:

e differentiate: A function that can differentiate an expression with respect to a variable (as
a string).

* maths: Some mathematical utilities for constructing expressions. This will be documented
later, but the most useful bits on here are the function elements times, plus and plus_fold.

We will expand this soon to advertise what functions we are able to differentiate to allow programs
to fail fast.

Differences to D()

* We try a little harder to simplify expressions.

* The distribution functions in the monty DSL (e.g., Poisson) are (will be) handled specially,
allowing substitution of log-densities and expectations.

* Once we support array expressions, we will be able to differentiate through these.

Roadmap

We may need to make this slightly extensible in future, but for now the set of functions that can be
differentiated is closed.

monty_domain_expand Expand (and check) domain against a packer

Description

Check and expand a domain, where it is used alongside a monty_packer object. This can be used
to expand domains for logical parameters (e.g. a vector b) into its specific names (e.g., b[1], b[21],
etc) without having to rely on the internals about how these names are constructed.

Usage

monty_domain_expand(domain, packer)

Arguments

domain A two-column matrix as defined in monty_model, with row names correspond-
ing to either logical names (e.g., b) or specific names b[1] that are present in
your packer. NULL is allowed where all parameters are defined over the entire
real line.

packer A monty_packer object

4 monty_dsl
Value
A two dimensional matrix representing your domain, or NULL if domain was given as NULL.
Examples
packer <- monty_packer(c("a", "b"), list(x = 3, y = c(2, 2)))
monty_domain_expand(NULL, packer)
monty_domain_expand(rbind(x = c(@, 1)), packer)
monty_domain_expand(rbind(x = c(@, 1), "x[2]" = c(@, Inf)), packer)
monty_domain_expand(rbind(x = c(@, 1), "y" = c(@, Inf)), packer)
monty_dsl Domain Specific Language for monty
Description
Create a model using the monty DSL; this function will likely change name in future, as will its
interface.
Usage
monty_dsl(x, type = NULL, gradient = NULL)
Arguments
X The model as an expression. This may be given as an expression, as a string, or
as a path to a filename. Typically, we’ll do a reasonable job of working out what
you’ve provided but use the type argument to disambiguate or force a particular
interpretation. The argument uses rlang’s quosures to allow you to work with
expressions directly; see examples for details.
type Force interpretation of the type of expression given as x. If given, valid options
are expression, text or file.
gradient Control gradient derivation. If NULL (the default) we try and generate a gradient
function for your model and warn if this is not possible. If FALSE, then we do
not attempt to construct a gradient function, which prevents a warning being
generated if this is not possible. If TRUE, then we will error if it is not possible
to create a gradient function.
Value

A monty_model object derived from the expressions you provide.

monty_dsl_distributions 5

Examples

Expressions that correspond to models can be passed in with no
quoting
monty_dsl(a ~ Normal(@, 1))
monty_ds1({
a ~ Normal(o, 1)
b ~ Exponential(1)
»

You can also pass strings
monty_dsl("a ~ Normal(@, 1)")

monty_dsl_distributions
Information about supported distributions

Description

Report information about supported distributions in the DSL. This is primarily intended for use in
packages which use monty_dsl_parse_distribution, as this function reports information about which
distributions and arguments would succeed there.

Usage

monty_dsl_distributions()

Value

A data.frame with columns
* name the name of the distribution; each name begins with a capital letter, and there are dupli-
cate names where different parameterisations are supported.
* args the arguments of all parameters, except the random variable itself which is given as the

first argument to density functions.

We may expand the output here in the future to include information on if distributions have support
in C++, but we might end up supporting everything this way soon.

6 monty_dsl_parse_distribution

monty_dsl_error_explain
Explain monty error

Description

Explain error codes produced by monty. This is a work in progress, and we would like feedback on
what is useful as we improve it. The idea is that if you see an error you can link through to get more
information on what it means and how to resolve it. The current implementation of this will send
you to the rendered vignettes, but in the future we will arrange for offline rendering too.

Usage

monty_dsl_error_explain(code)

Arguments
code The error code, as a string, in the form Exxx (a capital "E" followed by three
numbers)
Value

Nothing, this is called for its side effect only

monty_dsl_parse_distribution
Parse distribution expression

Description

Parse an expression as if it were a call to one of monty’s distribution functions (e.g., Normal,
Poisson). This will fill in any defaults, disambiguate where multiple parameterisations of the
distribution are available, and provide links through to the C++ API. This function is designed for
use from other packages that use monty, and is unlikely to be useful to most users.

Usage

monty_dsl_parse_distribution(expr, name = NULL)

Arguments
expr An expression
name Name for the expression, used in constructing messages that you can use in

€ITOorS.

monty_model 7

Value

A list; the contents of this are subject to change. However you can (to a degree) rely on the following
elements:

* name: The name of the distribution (e.g., Normal). This will be the same as the name of the
function called in expr

e variant: The name of the distribution variant, if more than one is supported.

* args: The arguments that you provided, in position-matched order

* cpp: The names of the C++ entrypoint to use. This is a list with elements density and sample
for the log-density and sampling functions, and NULL where these do not yet exist.

Currently we also include:

e density: A function to compute the log-density. This will likely change once we support
creation of differentiable models because we will want to do something with the arguments
provided!

* sample: A function to sample from the distribution, given (as a first argument) a rng object
(see monty_rng)

monty_model Create basic model

Description

Create a basic monty model. This takes a user-supplied object that minimally can compute a proba-
bility density (via a density function) and information about parameters; with this we can sample
from the model using MCMC using monty_sample. We don’t imagine that many users will call this
function directly, but that this will be glue used by packages.

Usage

monty_model(model, properties = NULL)

Arguments
model A list or environment with elements as described in Details.
properties Optionally, a monty_model_properties object, used to enforce or clarify proper-
ties of the model.
Details

The model argument can be a list or environment (something indexable by $) and have elements:

8 monty_model

* density: A function that will compute some probability density. It must take an argument
representing a parameter vector (a numeric vector) and return a single value. This is the
posterior probability density in Bayesian inference, but it could be anything really. Models
can return -Inf if things are impossible, and we’ll try and cope gracefully with that wherever
possible. If the property allow_multiple_parameters is TRUE, then this function must be
able to handle the argument parameter being a matrix, and return a vector of densities.

* parameters: A character vector of parameter names. This vector is the source of truth for the
length of the parameter vector.

* domain: Information on the parameter domain. This is a two column matrix with length(parameters)

rows representing each parameter. The parameter minimum and maximum bounds are given
as the first and second column. Infinite values (-Inf or Inf) should be used where the param-
eter has infinite domain up or down. Currently used to translate from a bounded to unbounded
space for HMC, but we might also use this for reflecting proposals in MCMC too, as well as a
fast way of avoiding calculating densities where proposals fall out of bounds. If not present we
assume that the model is valid everywhere (i.e., that all parameters are valid from -Inf to Inf.
If unnamed, you must provide a domain for all parameters. If named, then you can provide a
subset, with parameters that are not included assumed to have a domain of (-Inf, Inf).

* direct_sample: A function to sample directly from the parameter space, given a monty_rng
object to sample from. In the case where a model returns a posterior (e.g., in Bayesian in-
ference), this is assumed to be sampling from the prior. We’ll use this for generating initial
conditions for MCMC where those are not given, and possibly other uses. If not given then
when using monty_sample () the user will have to provide a vector of initial states.

e gradient: A function to compute the gradient of density with respect to the parameter
vector; takes a parameter vector and returns a vector the same length. For efficiency, the
model may want to be stateful so that gradients can be efficiently calculated after a density
calculation, or density after gradient, where these are called with the same parameters. This
function is optional (and may not be well defined or possible to define).

* set_rng_state: A function to set the state (this is in contrast to the rng that is passed
through to direct_sample as that is the sampler’s rng stream, but we assume models will
look after their own stream, and that they may need many streams). Models that provide
this method are assumed to be stochastic; however, you can use the is_stochastic property
(via monty_model_properties()) to override this (e.g., to run a stochastic model with its
deterministic expectation). This function takes a raw vector of random number state from
monty_rng and uses it to set the random number state for your model; this is derived from the
random number stream for a particular chain, jumped ahead.

e get_rng_state: A function to get the RNG state; must be provided if set_rng_state is
present. Must return the random number state, which is a raw vector (potentially quite long).

* parameter_groups: Optionally, an integer vector indicating parameter group membership.
The format here may change (especially if we explore more complex nestings) but at present
parameters with group 0 affect everything (so are accepted or rejected as a whole), while
parameters in groups 1 to n are independent (for example, changing the parameters in group 2
does not affect the density of parameters proposed in group 3).

Value

An object of class monty_model. This will have elements:

monty_model_combine 9

* model: The model as provided

* parameters: The parameter name vector

* parameter_groups: The parameter groups

* domain: The parameter domain matrix, named with your parameters

* direct_sample: The direct_sample function, if provided by the model
* gradient: The gradient function, if provided by the model

* properties: A list of properties of the model; see monty_model_properties(). Currently
this contains:

has_gradient: the model can compute its gradient

has_direct_sample: the model can sample from parameters space

is_stochastic: the model will behave stochastically

has_parameter_groups: The model has separable parameter groups

monty_model_combine Combine two models

Description

Combine two models by multiplication. We’ll need a better name here. In Bayesian inference we
will want to create a model that represents the multiplication of a likelihood and a prior (in log
space) and it will be convenient to think about these models separately. Multiplying probabilities
(or adding on a log scale) is common enough that there may be other situations where we want to
do this.

Usage
monty_model_combine(a, b, properties = NULL, name_a = "a", name_b = "b")
Arguments
a The first model
b The second model
properties A monty_model_properties object, used to control (or enforce) properties of the
combined model.
name_a Name of the first model (defaulting to ’a’); you can use this to make error mes-
sages nicer to read, but it has no other practical effect.
name_b Name of the first model (defaulting to ’b’); you can use this to make error mes-

sages nicer to read, but it has no other practical effect.

10

Details

monty_model_density

Here we describe the impact of combining a pair of models

e density: this is the sum of the log densities from each model
* parameters: the union of parameters from each model is taken

e domain: The most restrictive domain is taken for each parameter. Parameters that do not

appear in one model are assumed to have infinite domain there.

gradient: if both models define a gradient, this is the sum of the gradients. If either does
not define a gradient, the resulting model will not have gradient support. Set has_gradient
= TRUE within ‘properties if you want to enforce that the combination is differentiable. If the
models disagree in their parameters, parameters that are missing from a model are assumed
(reasonably) to have a zero gradient.

direct_sample: this one is hard to do the right thing for. If neither model can be directly
sampled from that’s fine, we don’t directly sample. If only one model can be sampled from
and if it can sample from the union of all parameters then we take that function (this is the
case for a prior model when combined with a likelihood). Other cases will be errors, which
can be avoided by setting has_direct_gradient = FALSE in properties.

* is_stochastic: a model is stochastic if either component is stochastic.

The properties of the model will be combined as above, reflecting the properties of the joint model.

The model field will be an ordered, unnamed, list containing the two elements corresponding to
the first and second model (not the monty_model, but the underlying model, perhaps?). This is the
only part that makes a distinction between the two models here; for all components above they are
equivalent.

Value

A monty_model object

monty_model_density Compute log density

Description

Compute log density for a model. This is a wrapper around the $density property within a
monty_model object.

Usage

monty_model_density(model, parameters)

Arguments

model A monty_model object

parameters A vector or matrix of parameters

monty_model_direct_sample 11

Value

A log-density value, or vector of log-density values

See Also

monty_model_gradient for computing gradients and monty_model_direct_sample for sampling from
a model.

monty_model_direct_sample
Directly sample from a model

Description
Directly sample from a model. Not all models support this, and an error will be thrown if it is not
possible.

Usage

monty_model_direct_sample(model, rng, named = FALSE)

Arguments
model A monty_model object
rng Random number state, created by monty_rng. Use of an RNG with more than
one stream may or may not work as expected; this is something we need to tidy
up (mrc-5292)
named Logical, indicating if the output should be named using the parameter names.
Value

A vector or matrix of sampled parameters

monty_model_function Create monty_model from a function computing density

Description

Create a monty_model from a function that computes density. This allows use of any R function as
a simple monty model. If you need advanced model features, then this interface may not suit you
and you may prefer to use monty_model directly.

Usage

monty_model_function(density, packer = NULL, fixed = NULL)

12 monty_model_gradient

Arguments
density A function to compute log density. It can take any number of parameters
packer Optionally, a monty_packer object to control how your function parameters are
packed into a numeric vector. You can typically omit this if all the arguments to
your functions are present in your numeric vector and if they are all scalars.
fixed Optionally, a named list of fixed values to substitute into the call to density.
This cannot be used in conjunction with packer (you should use the fixed
argument to monty_packer instead).
Details

This interface will expand in future versions of monty to support gradients, stochastic models,
parameter groups and simultaneous calculation of density.

Value

A monty_model object that computes log density with the provided density function, given a
numeric vector argument representing all parameters.

monty_model_gradient Compute gradient of log density

Description

Compute the gradient of log density (which is returned by monty_model_density) with respect to
parameters. Not all models support this, and an error will be thrown if it is not possible.

Usage

monty_model_gradient(model, parameters, named = FALSE)

Arguments

model A monty_model object

parameters A vector or matrix of parameters

named Logical, indicating if the output should be named using the parameter names.
Value

A vector or matrix of gradients

See Also

monty_model_density for log density, and monty_model_direct_sample to sample from a model

monty_model_properties 13

monty_model_properties

Describe model properties

Description

Describe properties of a model. Use of this function is optional, but you can pass the return value
of this as the properties argument of monty_model to enforce that your model does actually have
these properties.

Usage

monty_model_properties(

has_gradient = NULL,
has_direct_sample = NULL,
is_stochastic = NULL,
has_parameter_groups = NULL,
allow_multiple_parameters = FALSE

Arguments

has_gradient Logical, indicating if the model has a gradient method. Use NULL (the default)

to detect this from the model.

has_direct_sample

Logical, indicating if the model has a direct_sample method. Use NULL (the
default) to detect this from the model.

is_stochastic Logical, indicating if the model is stochastic. Stochastic models must supply

set_rng_state and get_rng_state methods.

has_parameter_groups

Logical, indicating that the model can be decomposed into parameter groups

which are independent of each other. This is indicated by using the parameter_groups

field within the model object passed to monty_model, and by the presence of a
by_group argument to density and (later we may also support this in gradient).
Use NULL (the default) to detect this from the model.

allow_multiple_parameters

Value

Logical, indicating if the density calculation can support being passed a matrix
of parameters (with each column corresponding to a different parameter set) and
return a vector of densities. If FALSE, we will support some different approaches
to sort this out for you if this feature is needed. This cannot be detected from
the model, and the default is FALSE because it’s not always straightforward to
implement. However, where it is possible it may be much more efficient (via
vectorisation or parallelisation) to do this yourself.

A list of class monty_model_properties which should not be modified.

14 monty_observer

monty_observer Create observer

Description

Create an observer to extract additional details from your model during the sampling process.

Usage

monty_observer(observe, finalise = NULL, combine = NULL, append = NULL)

Arguments

observe A function that will run with arguments model (the model that you passed in
to monty_model) and rng (an rng object). This function should return a list. It
is best if the list returned is named, with no duplicated names, and with return
values that have the same exact dimensions for every iteration. If you do this,
then you will not have to provide any of the following arguments, which are
going to be hard to describe and worse to implement.

finalise A function that runs after a single chain has run, and you use to simplify across
all samples drawn from that chain. Takes a single argument which is the list
with one set of observations per sample.

combine A function that runs after all chains have run, and you use to simplify across
chains. Takes a single argument, which is the list with one set of observations
per chain.

append A function that runs after a continuation of chain has run (via monty_sample_continue.
Takes two arguments representing the fully simplified observations from the first
and second chains.

Details

Sometimes you want to extract additional information from your model as your chain runs. The
case we see this most is when running MCMC with a particle filter (pmcmc); in this case while the
likelihood calculation is running we are computing lots of interesting quantities such as the final
state of the system (required for onward simulation) and filtered trajectories through time. Because
these are stochastic we can’t even just rerun the model with our sampled parameter sets, because the
final states that are recovered depend also on the random number generators (practically we would
not want to, as it is quite expensive to compute these quantities).

The observer mechanism allows you to carry out arbitrary additional calculations with your model
at the end of the step.

Value

An object with class monty_observer which can be passed in to monty_sample.

monty_packer

15

monty_packer

Build a parameter packer

Description

Build a parameter packer, which can be used in models to translate between an unstructured vector
of numbers (the vector being updated by an MCMC for example) to a structured list of named
values, which is easier to program against. We refer to the process of taking a named list of scalars,
vectors and arrays and converting into a single vector "packing" and the inverse "unpacking".

Usage

monty_packer(scalar = NULL, array = NULL, fixed = NULL, process = NULL)

Arguments

scalar

array

fixed

process

Details

Names of scalar parameters. This is similar for listing elements in array with
values of 1, though elements in scalar will be placed ahead of those listed
in array within the final parameter vector, and elements in array will have
generated names that include square brackets.

A list, where names correspond to the names of array parameters and values
correspond to the lengths of parameters. Multiple dimensions are allowed (so if
you provide an element with two entries these represent dimensions of a matrix).
Zero-length integer vectors or NULL values are counted as scalars, which allows
you to put scalars at positions other than the front of the packing vector. In
future, you may be able to use strings as values for the lengths, in which case
these will be looked for within fixed.

A named list of fixed parameters; these will be added into the final list directly.
These typically represent additional pieces of data that your model needs to run,
but which you are not performing inference on.

An arbitrary R function that will be passed the final assembled parameter list; it
may create any additional entries, which will be concatenated onto the original
list. If you use this you should take care not to return any values with the same
names as entries listed in scalar, array or fixed, as this is an error (this is
so that pack() is not broken). We will likely play around with this process in
future in order to get automatic differentiation to work.

There are several places where it is most convenient to work in an unstructured vector:

* An MCMC is typically discussed as a the updating of some vector x to another x'

* An optimisation algorithm will try and find a set of values for a vector x that minimises (or
maximises) some function f (x)

* An ode solver works with a vector x(t) (x at time t) and considers x(t + h) by computing
the vector of derivatives dx(t)/dt

16 monty_packer

In all these cases, the algorithm that needs the vector of numbers knows nothing about what they
represent. Commonly, these will be a packed vector of parameters. So our vector x might actually
represent the parameters a, b and c in a vector as [a, b, c] - this is a very common pattern, and
you have probably implemented this yourself.

In more complex settings, we might want our vector x to collect more structured quantities. Suppose
that you are fitting a model with an age-structured or sex-structured parameter. Rather than having
a series of scalars packed into your vector x you might have a series of values destined to be treated
as a vector:

1 2 3 4 5 6 7 |
| a b ¢

d1 d2 d3 d4 |

So here we might have a vector of length 7, where the first three elements will represent be the
scalar values a, b and c but the next four will be a vector d.

Unpacked, this might be written as:
list(a =1, b=2, c =3, d=4:7)

The machinery here is designed to make these transformations simple and standardised within
monty, and should be flexible enough for many situations. We will also use these from within
dust2 and odin2 for transformations in and out of vectors of ODE state.

Value
An object of class monty_packer, which has three elements:

* parameters: a character vector of computed parameter names; these are the names that your
statistical model will use.

* unpack: a function that can unpack an unstructured vector (say, from your statistical model
parameters) into a structured list (say, for your generative model)

* pack: a function that can pack your structured list of parameters back into a numeric vector
suitable for the statistical model. This ignores values created by a preprocess function.

* index: a function which produces a named list where each element has the name of a value in
parameters and each value has the indices within an unstructured vector where these values
can be found.

When to use process

The process function is a get-out-of-jail function designed to let you do arbitrary transformations
when unpacking a vector. In general, this should not be the first choice to use because it is less
easy to reason about by other tooling (for example, as we develop automatic differentiation support
for use with the HMC algorithm, a process function will be problematic because we will need to
make sure we can differentiate this process). However, there are cases where it will be only way to
achieve some results.

Imagine that you are packing a 2x2 covariance matrix into your vector in order to use within an
MCMC or optimisation algorithm. Ultimately, our unpacked vector will need to hold four ele-
ments (b11, b12, b21, b22), but there are only three distinct values as the two off-diagonal elements

monty_rng 17

will be the same (i.e., b12 == b21°"). So we might write this passing in b_raw =
3toarray, so that our unpacked list holds b_raw=c(bl1,bl12,b22). We would then write pro-
cess‘ as something like:

process <- function(x) {
list(b = matrix(x$b_rawlc(1, 2, 2, 3)]1, 2, 2))
}

which creates the symmetric 2x2 matrix b from b_raw.

Unpacking matrices

If you do not use fixed or process when defining your packer, then you can use $unpack() with
a matrix or higher-dimensional output. There are two ways that you might like to unpack this sort
of output. Assume you have a matrix m with 3 rows and 2 columns; this means that we have two
sets of parameters or state (one per column) and 3 states within each; this is the format that MCMC
parameters will be in for example.

The first would to be return a list where the ith element is the result of unpacking the ith parame-
ter/state vector. You can do this by running

apply(m, 2, p$unpack)

The second would be to return a named list with three elements where the ith element is the
unpacked version of the ith state. In this case you can pass the matrix directly in to the unpacker:

p$unpack(m)

When you do this, the elements of m will acquire an additional dimension; scalars become vectors
(one per set), vectors become matrices (one column per set) and so on.

This approach generalises to higher dimensional input, though we suspect you’ll spend a bit of time
head-scratching if you use it.

We do not currently offer the ability to pack this sort of output back up, though it’s not hard. Please
let us know if you would use this.

monty_rng Monty Random Number Generator

Description

Create an object that can be used to generate random numbers with the same RNG as monty uses
internally. This is primarily meant for debugging and testing the underlying C++ rather than a
source of random numbers from R.

Value

A monty_rng object, which can be used to drawn random numbers from monty’s distributions.

18 monty_rng

Running multiple streams, perhaps in parallel

The underlying random number generators are designed to work in parallel, and with random access
to parameters (see vignette("rng") for more details). However, this is usually done within the
context of running a model where each particle sees its own stream of numbers. We provide some
support for running random number generators in parallel, but any speed gains from parallelisation
are likely to be somewhat eroded by the overhead of copying around a large number of random
numbers.

All the random distribution functions support an argument n_threads which controls the number
of threads used. This argument will silently have no effect if your installation does not support
OpenMP.

Parallelisation will be performed at the level of the stream, where we draw n numbers from each
stream for a total of n * n_streams random numbers using n_threads threads to do this. Setting
n_threads to be higher than n_streams will therefore have no effect. If running on somebody
else’s system (e.g., an HPC, CRAN) you must respect the various environment variables that control
the maximum allowable number of threads.

With the exception of random_real, each random number distribution accepts parameters; the in-
terpretations of these will depend on n, n_streams and their rank.
e If a scalar then we will use the same parameter value for every draw from every stream

* If a vector with length n then we will draw n random numbers per stream, and every stream
will use the same parameter value for every stream for each draw (but a different, shared,
parameter value for subsequent draws).

o If a matrix is provided with one row and n_streams columns then we use different parameters
for each stream, but the same parameter for each draw.

* If a matrix is provided with n rows and n_streams columns then we use a parameter value

[i, jJ]for the ith draw on the jth stream.

The rules are slightly different for the prob argument to multinomial as for that prob is a vector
of values. As such we shift all dimensions by one:

* If a vector we use same prob every draw from every stream and there are length(prob)
possible outcomes.

o If a matrix with n columns then vary over each draw (the ith draw using vector prob[, i] but
shared across all streams. There are nrow(prob) possible outcomes.

* If a 3d array is provided with 1 column and n_streams "layers" (the third dimension) then we
use then we use different parameters for each stream, but the same parameter for each draw.

o If a3d array is provided with n columns and n_streams "layers" then we vary over both draws
and streams so that with use vector prob[, i, j1 for the ith draw on the jth stream.

The output will not differ based on the number of threads used, only on the number of streams.

Public fields

info Information about the generator (read-only)

monty_rng 19

Methods
Public methods:

e monty_rng$new()

* monty_rng$size()

e monty_rng$jump()

e monty_rng$long_jump()

* monty_rng$random_real()

e monty_rng$random_normal ()

* monty_rng$uniform()

e monty_rng$normal ()

e monty_rng$binomial ()

* monty_rng$nbinomial ()

* monty_rng$hypergeometric()

* monty_rng$gamma_scale()

* monty_rng$gamma_rate()

* monty_rng$poisson()

* monty_rng$exponential_rate()
e monty_rng$exponential_mean()
* monty_rng$cauchy()

e monty_rng$multinomial()

e monty_rng$beta()

* monty_rng$state()

Method new(): Create a monty_rng object
Usage:
monty_rng$new(
seed = NULL,
n_streams = 1L,
real_type = "double"”,
deterministic = FALSE

)
Arguments:

seed The seed, as an integer, a raw vector or NULL. If an integer we will create a suitable seed
via the "splitmix64" algorithm, if a raw vector it must the correct length (a multiple of either
32 or 16 for float = FALSE or float = TRUE respectively). If NULL then we create a seed
using R’s random number generator.

n_streams The number of streams to use (see Details)

real_type The type of floating point number to use. Currently only float and double are
supported (with double being the default). This will have no (or negligible) impact on
speed, but exists to test the low-precision generators.

deterministic Logical, indicating if we should use "deterministic" mode where distributions
return their expectations and the state is never changed.

Method size(): Number of streams available

20

monty_rng

Usage:
monty_rng$size()

Method jump(): The jump function updates the random number state for each stream by ad-
vancing it to a state equivalent to 2128 numbers drawn from each stream.

Usage:

monty_rng$jump()

Method long_jump(): Longer than $jump, the $long_jump method is equivalent to 2192
numbers drawn from each stream.

Usage:

monty_rng$long_jump()

Method random_real (): Generate n numbers from a standard uniform distribution
Usage:
monty_rng$random_real(n, n_threads = 1L)
Arguments:

n Number of samples to draw (per stream)
n_threads Number of threads to use; see Details

Method random_normal(): Generate n numbers from a standard normal distribution

Usage:

monty_rng$random_normal(n, n_threads = 1L, algorithm = "box_muller")
Arguments:

n Number of samples to draw (per stream)

n_threads Number of threads to use; see Details

algorithm Name of the algorithm to use; currently box_muller and ziggurat are supported,
with the latter being considerably faster.

Method uniform(): Generate n numbers from a uniform distribution

Usage:

monty_rng$uniform(n, min, max, n_threads = 1L)
Arguments:

n Number of samples to draw (per stream)

min The minimum of the distribution (length 1 or n)

max The maximum of the distribution (length 1 or n)
n_threads Number of threads to use; see Details

Method normal(): Generate n numbers from a normal distribution

Usage:
monty_rng$normal(n, mean, sd, n_threads = 1L, algorithm = "box_muller”)

Arguments:

n Number of samples to draw (per stream)

monty_rng 21

mean The mean of the distribution (length 1 or n)
sd The standard deviation of the distribution (length 1 or n)
n_threads Number of threads to use; see Details

algorithm Name of the algorithm to use; currently box_muller and ziggurat are supported,
with the latter being considerably faster.

Method binomial(): Generate n numbers from a binomial distribution
Usage:
monty_rng$binomial(n, size, prob, n_threads = 1L)
Arguments:
n Number of samples to draw (per stream)
size The number of trials (zero or more, length 1 or n)
prob The probability of success on each trial (between O and 1, length 1 or n)
n_threads Number of threads to use; see Details

Method nbinomial(): Generate n numbers from a negative binomial distribution
Usage:
monty_rng$nbinomial(n, size, prob, n_threads = 1L)
Arguments:
n Number of samples to draw (per stream)
size The target number of successful trials (zero or more, length 1 or n)
prob The probability of success on each trial (between O and 1, length 1 or n)
n_threads Number of threads to use; see Details

Method hypergeometric(): Generate n numbers from a hypergeometric distribution
Usage:
monty_rng$hypergeometric(n, n1, n2, k, n_threads = 1L)
Arguments:
n Number of samples to draw (per stream)
n1 The number of white balls in the urn (called n in R’s rhyper)
n2 The number of black balls in the urn (called m in R’s rhyper)
k The number of balls to draw
n_threads Number of threads to use; see Details

Method gamma_scale(): Generate n numbers from a gamma distribution

Usage:

monty_rng$gamma_scale(n, shape, scale, n_threads = 1L)
Arguments:

n Number of samples to draw (per stream)

shape Shape

scale Scale’

n_threads Number of threads to use; see Details

monty_rng

Method gamma_rate(): Generate n numbers from a gamma distribution
Usage:
monty_rng$gamma_rate(n, shape, rate, n_threads = 1L)
Arguments:
n Number of samples to draw (per stream)
shape Shape
rate Rate’
n_threads Number of threads to use; see Details

Method poisson(): Generate n numbers from a Poisson distribution
Usage:
monty_rng$poisson(n, lambda, n_threads = 1L)
Arguments:
n Number of samples to draw (per stream)
lambda The mean (zero or more, length 1 or n). Only valid for lambda <= 10"7
n_threads Number of threads to use; see Details

Method exponential_rate(): Generate n numbers from a exponential distribution
Usage:
monty_rng$exponential_rate(n, rate, n_threads = 1L)
Arguments:
n Number of samples to draw (per stream)

rate The rate of the exponential
n_threads Number of threads to use; see Details

Method exponential_mean(): Generate n numbers from a exponential distribution
Usage:
monty_rng$exponential_mean(n, mean, n_threads = 1L)
Arguments:
n Number of samples to draw (per stream)
mean The mean of the exponential
n_threads Number of threads to use; see Details

Method cauchy(): Generate n draws from a Cauchy distribution.

Usage:

monty_rng$cauchy(n, location, scale, n_threads = 1L)

Arguments:

n Number of samples to draw (per stream)

location The location of the peak of the distribution (also its median)

scale A scale parameter, which specifies the distribution’s "half-width at half-maximum'

n_threads Number of threads to use; see Details

monty_rng 23

Method multinomial(): Generate n draws from a multinomial distribution. In contrast with
most of the distributions here, each draw is a vector with the same length as prob.

Usage:

monty_rng$multinomial(n, size, prob, n_threads = 1L)

Arguments:

n The number of samples to draw (per stream)

size The number of trials (zero or more, length 1 or n)

prob A vector of probabilities for the success of each trial. This does not need to sum to 1

(though all elements must be non-negative), in which case we interpret prob as weights and
normalise so that they equal 1 before sampling.

n_threads Number of threads to use; see Details

Method beta(): Generate n numbers from a beta distribution
Usage:
monty_rng$beta(n, a, b, n_threads = 1L)
Arguments:
n Number of samples to draw (per stream)
a The first shape parameter

b The second shape parameter
n_threads Number of threads to use; see Details

Method state(): Returns the state of the random number stream. This returns a raw vector
of length 32 * n_streams. It is primarily intended for debugging as one cannot (yet) initialise a
monty_rng object with this state.

Usage:
monty_rng$state()

Examples

rng <- monty::monty_rng$new(42)

Shorthand for Uniform(@, 1)
rng$random_real(5)

Shorthand for Normal(@, 1)
rng$random_normal (5)

Uniform random numbers between min and max
rng$uniform(5, -2, 6)

Normally distributed random numbers with mean and sd
rng$normal (5, 4, 2)

Binomially distributed random numbers with size and prob
rng$binomial(5, 10, 0.3)

Negative binomially distributed random numbers with size and prob

24 monty_rng_distributed_state

rng$nbinomial (5, 10, 0.3)

Hypergeometric distributed random numbers with parameters n1, n2 and k
rng$hypergeometric(5, 6, 10, 4)

Gamma distributed random numbers with parameters shape and scale
rng$gamma_scale(5, 0.5, 2)

Gamma distributed random numbers with parameters shape and rate
rng$gamma_rate(5, 0.5, 2)

Poisson distributed random numbers with mean lambda
rng$poisson(5, 2)

Exponentially distributed random numbers with rate
rng$exponential_rate(5, 2)

Exponentially distributed random numbers with mean
rng$exponential_mean(5, 0.5)

Multinomial distributed random numbers with size and vector of
probabiltiies prob
rng$multinomial(5, 10, c(@.1, 0.3, 0.5, 0.1))

monty_rng_distributed_state
Create a set of distributed seeds

Description

Create a set of initial random number seeds suitable for using within a distributed context (over
multiple processes or nodes) at a level higher than a single group of synchronised threads.

Usage

monty_rng_distributed_state(
seed = NULL,
n_streams = 1L,
n_nodes = 1L,
algorithm = "xoshiro256plus”

monty_rng_distributed_pointer(
seed = NULL,
n_streams = 1L,
n_nodes = 1L,
algorithm = "xoshiro256plus”

)

monty_rng_pointer 25

Arguments
seed Initial seed to use. As for monty_rng, this can be NULL (create a seed using R’s
generators), an integer or a raw vector of appropriate length.
n_streams The number of streams to create per node.
n_nodes The number of separate seeds to create. Each will be separated by a "long jump”
for your generator.
algorithm The name of an algorithm to use.
Details

See vignette("rng_distributed"”) for a proper introduction to these functions.

Value

A list of either raw vectors (for monty_rng_distributed_state) or of monty_rng_pointer objects
(for monty_rng_distributed_pointer)

Examples

monty: :monty_rng_distributed_state(n_nodes = 2)

monty: :monty_rng_distributed_pointer(n_nodes = 2)

monty_rng_pointer Create pointer to random number generator stream

Description

This function exists to support use from other packages that wish to use monty’s random number
support, and creates an opaque pointer to a set of random number streams.

Public fields

algorithm The name of the generator algorithm used (read-only)

n_streams The number of streams of random numbers provided (read-only)

Methods

Public methods:
e monty_rng_pointer$new()
e monty_rng_pointer$sync()
e monty_rng_pointer$state()
e monty_rng_pointer$is_current()

Method new(): Create a new monty_rng_pointer object

Usage:

26 monty_runner_parallel

monty_rng_pointer$new(
seed = NULL,
n_streams = 1L,
long_jump = oL,
algorithm = "xoshiro256plus”
)
Arguments:
seed The random number seed to use (see monty_rng for details)
n_streams The number of independent random number streams to create
long_jump Optionally an integer indicating how many "long jumps" should be carried out im-
mediately on creation. This can be used to create a distributed parallel random number
generator (see monty_rng_distributed_state)
algorithm The random number algorithm to use. The default is xoshiro256plus which is a
good general choice

Method sync(): Synchronise the R copy of the random number state. Typically this is only
needed before serialisation if you have ever used the object.

Usage:

monty_rng_pointer$sync()
Method state(): Return a raw vector of state. This can be used to create other generators with
the same state.

Usage:

monty_rng_pointer$state()

Method is_current(): Return a logical, indicating if the random number state that would be
returned by state() is "current" (i.e., the same as the copy held in the pointer) or not. This is
TRUE on creation or immediately after calling $sync() or $state() and FALSE after any use of
the pointer.

Usage:
monty_rng_pointer$is_current()
Examples

monty: :monty_rng_pointer$new()

monty_runner_parallel Run MCMC chain in parallel

Description

Run MCMC chains in parallel (at the same time). This runner uses the parallel package to
distribute your chains over a number of worker processes on the same machine. Compared with
the "worker" support in mcstate version 1 this is very simple and we’ll improve it over time. In
particular we do not report back any information about progress while a chain is running on a worker
or even across chains. There’s also no support to warn you if your number of chains do not neatly
divide through by the number of workers. Mostly this exists as a proof of concept for us to think
about the different interfaces. Unless your chains are quite slow, the parallel runner will be slower
than the serial runner (monty_runner_serial) due to the overhead cost of starting the cluster.

monty_runner._serial 27

Usage

monty_runner_parallel(n_workers)

Arguments
n_workers Number of workers to create a cluster from. In a multi-user setting be care-

ful not to set this to more cores than you are allowed to use. You can use
parallel::detectCores() to get an estimate of the number of cores you have
on a single user system (but this is often an overestimate as it returns the number
of logical cores, including those from "hyperthreading"). Fewer cores than this
will be used if you run fewer chains than you have workers.

Value

A runner of class monty_runner that can be passed to monty_sample()

monty_runner_serial Run MCMC chain in series

Description
Run MCMC chains in series (one after another). This is the simplest chain runner, and the default
used by monty_sample(). It has nothing that can be configured (yet).

Usage

monty_runner_serial (progress = NULL)

Arguments
progress Optional logical, indicating if we should print a progress bar while running. If
NULL, we use the value of the option monty . progress if set, otherwise we show
the progress bar (as it is typically wanted). The progress bar itself responds to
cli’s options; in particular cli.progress_show_after and cli.progress_clear
will affect your experience.
Value

A runner of class monty_runner that can be passed to monty_sample()

28 monty_sample

monty_runner_simultaneous
Run MCMC chains simultaneously

Description

Run chains simultaneously. This differs from monty_runner_parallel, which runs chains individu-
ally in parallel by working with models that can evaluate multiple densities at the same time. There
are situations where this might be faster than running in parallel, but primarily this exists so that we
can see that samplers can work with multiple samples at once.

Usage

monty_runner_simultaneous(progress = NULL)

Arguments
progress Optional logical, indicating if we should print a progress bar while running. If
NULL, we use the value of the option monty . progress if set, otherwise we show
the progress bar (as it is typically wanted). The progress bar itself responds to
cli’s options; in particular c1i. progress_show_after and cli.progress_clear
will affect your experience.
Value

A runner of class monty_runner that can be passed to monty_sample()

monty_sample Sample from a model

Description

Sample from a model. Uses a Monte Carlo method (or possibly something else in future) to generate
samples from your distribution. This is going to change a lot in future, as we add support for
distributing over workers, and for things like parallel reproducible streams of random numbers. For
now it just runs a single chain as a proof of concept.

Usage

monty_sample(
model,
sampler,
n_steps,
initial = NULL,
n_chains = 1L,

monty_sample 29

runner = NULL,
observer = NULL,
restartable = FALSE

)
Arguments

model The model to sample from; this should be a monty_model for now, but we might
change this in future to test to see if things match an interface rather than a
particular class attribute.

sampler A sampler to use. These will be described later, but we hope to make these
reasonably easy to implement so that we can try out different sampling ideas.
For now, the only sampler implemented is monty_sampler_random_walk().

n_steps The number of steps to run the sampler for.

initial Optionally, initial parameter values for the sampling. If not given, we sample
from the model (or its prior).

n_chains Number of chains to run. The default is to run a single chain, but you will likely
want to run more.

runner A runner for your chains. The default option is to run chains in series (via
monty_runner_serial). The only other current option is monty_runner_parallel
which uses the parallel package to run chains in parallel. If you only run one
chain then this argument is best left alone.

observer An observer, created via monty_observer, which you can use to extract addi-

tional information from your model at points included in the chain (for example,
trajectories from a dynamical model).

restartable Logical, indicating if the chains should be restartable. This will add additional
data to the chains object.

Value

A list of parameters and densities; we’ll write tools for dealing with this later. Elements include:

* pars: An array with three dimensions representing (in turn) parameter, sample and chain, so
that pars[i, j, k] is the ith parameter from the jth sample from the kth chain. The rows
will be named with the names of the parameters, from your model.

* density: A matrix of model log densities, with n_steps rows and n_chains columns.

e initial: A record of the initial conditions, a matrix with as many rows as you have parame-
ters and n_chains columns (this is the same format as the matrix form of the initial input
parameter)

* details: Additional details reported by the sampler; this will be a list of length n_chains (or
NULL) and the details depend on the sampler. This one is subject to change.

* observations: Additional details reported by the model. This one is also subject to change.

30 monty_sampler._adaptive

monty_sampler_adaptive
Adaptive Metropolis-Hastings Sampler

Description

Create an adaptive Metropolis-Hastings sampler, which will tune its variance covariance matrix (vs
the simple random walk sampler monty_sampler_random_walk).

Usage

monty_sampler_adaptive(
initial_vcv,
initial_vcv_weight = 1000,
initial_scaling = 1,
initial_scaling_weight = NULL,
min_scaling = 0,
scaling_increment = NULL,
log_scaling_update = TRUE,
acceptance_target = 0.234,
forget_rate = 0.2,
forget_end = Inf,
adapt_end = Inf,
pre_diminish = 0

Arguments

initial_vecv An initial variance covariance matrix; we’ll start using this in the proposal,
which will gradually become more weighted towards the empirical covariance
matrix calculated from the chain.

initial_vcv_weight
Weight of the initial variance-covariance matrix used to build the proposal of
the random-walk. Higher values translate into higher confidence of the initial
variance-covariance matrix and means that update from additional samples will
be slower.

initial_scaling
The initial scaling of the variance covariance matrix to be used to generate the
multivariate normal proposal for the random-walk Metropolis-Hastings algo-
rithm. To generate the proposal matrix, the weighted variance covariance ma-
trix is multiplied by the scaling parameter squared times 2.38"2 / n_pars (where
n_pars is the number of fitted parameters). Thus, in a Gaussian target parameter
space, the optimal scaling will be around 1.

initial_scaling_weight
The initial weight used in the scaling update. The scaling weight will increase
after the first pre_diminish iterations, and as the scaling weight increases the

monty_sampler_adaptive 31

adaptation of the scaling diminishes. If NULL (the default) the value is 5 / (ac-
ceptance_target * (1 - acceptance_target)).

min_scaling The minimum scaling of the variance covariance matrix to be used to gener-
ate the multivariate normal proposal for the random-walk Metropolis-Hastings
algorithm.

scaling_increment
The scaling increment which is added or subtracted to the scaling factor of the
variance-covariance after each adaptive step. If NULL (the default) then an opti-
mal value will be calculated.

log_scaling_update
Logical, whether or not changes to the scaling parameter are made on the log-

scale.
acceptance_target

The target for the fraction of proposals that should be accepted (optimally) for
the adaptive part of the chain.

forget_rate The rate of forgetting early parameter sets from the empirical variance-covariance
matrix in the MCMC chains. For example, forget_rate = 0.2 (the default)
means that once in every 5Sth iterations we remove the earliest parameter set in-
cluded, so would remove the 1st parameter set on the 5th update, the 2nd on the
10th update, and so on. Setting forget_rate = @ means early parameter sets
are never forgotten.

forget_end The final iteration at which early parameter sets can be forgotten. Setting forget_rate
= Inf (the default) means that the forgetting mechanism continues throughout
the chains. Forgetting early parameter sets becomes less useful once the chains
have settled into the posterior mode, so this parameter might be set as an esti-
mate of how long that would take.

adapt_end The final iteration at which we can adapt the multivariate normal proposal.
Thereafter the empirical variance-covariance matrix, its scaling and its weight
remain fixed. This allows the adaptation to be switched off at a certain point to
help ensure convergence of the chain.

pre_diminish The number of updates before adaptation of the scaling parameter starts to di-
minish. Setting pre_diminish = @ means there is diminishing adaptation of the
scaling parameter from the offset, while pre_diminish = Inf would mean there
is never diminishing adaptation. Diminishing adaptation should help the scaling
parameter to converge better, but while the chains find the location and scale of
the posterior mode it might be useful to explore with it switched off.

Details

Efficient exploration of the parameter space during an MCMC might be difficult when the target
distribution is of high dimensionality, especially if the target probability distribution present a high
degree of correlation. Adaptive schemes are used to "learn" on the fly the correlation structure by
updating the proposal distribution by recalculating the empirical variance-covariance matrix and
rescale it at each adaptive step of the MCMC.

Our implementation of an adaptive MCMC algorithm is based on an adaptation of the "acceler-
ated shaping" algorithm in Spencer (2021). The algorithm is based on a random-walk Metropolis-
Hastings algorithm where the proposal is a multi-variate Normal distribution centred on the current
point.

32 monty_sampler_hmc

Spencer SEF (2021) Accelerating adaptation in the adaptive Metropolis—Hastings random walk
algorithm. Australian & New Zealand Journal of Statistics 63:468-484.

Value

A monty_sampler object, which can be used with monty_sample

monty_sampler_hmc Create HMC

Description

Create a Hamiltonian Monte Carlo sampler, implemented using the leapfrog algorithm.

Usage

monty_sampler_hmc(
epsilon = 0.015,
n_integration_steps = 10,

vcv = NULL,
debug = FALSE
)
Arguments
epsilon The step size of the HMC steps

n_integration_steps
The number of HMC steps per step

vcv A variance-covariance matrix for the momentum vector. The default uses an
identity matrix.

debug Logical, indicating if we should save all intermediate points and their gradients.
This will add a vector "history" to the details after the integration. This will slow
things down though as we accumulate the history inefficiently.

Value

A monty_sampler object, which can be used with monty_sample

monty_sampler_nested_adaptive 33

monty_sampler_nested_adaptive
Nested Adaptive Metropolis-Hastings Sampler

Description

Create a nested adaptive Metropolis-Hastings sampler, which extends the adaptive sampler monty_sampler_adaptive,
tuning the variance covariance matrices for proposal for the separable sections of a nested model

(vs the simple nested random walk sampler monty_sampler_random_walk). This sampler requires

that models support the has_parameter_groups property.

Usage

monty_sampler_nested_adaptive(
initial_vcv,
initial_vcv_weight = 1000,
initial_scaling = 1,
initial_scaling_weight = NULL,
min_scaling = 0,
scaling_increment = NULL,
log_scaling_update = TRUE,
acceptance_target = 0.234,
forget_rate = 0.2,
forget_end = Inf,
adapt_end = Inf,
pre_diminish = @

Arguments

initial_vev An initial variance covariance matrix; we’ll start using this in the proposal,
which will gradually become more weighted towards the empirical covariance
matrix calculated from the chain.

initial_vcv_weight
Weight of the initial variance-covariance matrix used to build the proposal of
the random-walk. Higher values translate into higher confidence of the initial
variance-covariance matrix and means that update from additional samples will
be slower.

initial_scaling
The initial scaling of the variance covariance matrix to be used to generate the
multivariate normal proposal for the random-walk Metropolis-Hastings algo-
rithm. To generate the proposal matrix, the weighted variance covariance ma-
trix is multiplied by the scaling parameter squared times 2.38”"2 / n_pars (where
n_pars is the number of fitted parameters). Thus, in a Gaussian target parameter
space, the optimal scaling will be around 1.

34 monty_sampler_nested_adaptive

initial_scaling_weight
The initial weight used in the scaling update. The scaling weight will increase
after the first pre_diminish iterations, and as the scaling weight increases the
adaptation of the scaling diminishes. If NULL (the default) the value is 5 / (ac-
ceptance_target * (1 - acceptance_target)).

min_scaling The minimum scaling of the variance covariance matrix to be used to gener-
ate the multivariate normal proposal for the random-walk Metropolis-Hastings
algorithm.

scaling_increment
The scaling increment which is added or subtracted to the scaling factor of the
variance-covariance after each adaptive step. If NULL (the default) then an opti-
mal value will be calculated.

log_scaling_update
Logical, whether or not changes to the scaling parameter are made on the log-
scale.

acceptance_target
The target for the fraction of proposals that should be accepted (optimally) for
the adaptive part of the chain.

forget_rate The rate of forgetting early parameter sets from the empirical variance-covariance
matrix in the MCMC chains. For example, forget_rate = 0.2 (the default)
means that once in every Sth iterations we remove the earliest parameter set in-
cluded, so would remove the 1st parameter set on the 5th update, the 2nd on the
10th update, and so on. Setting forget_rate = @ means early parameter sets
are never forgotten.

forget_end The final iteration at which early parameter sets can be forgotten. Setting forget_rate
= Inf (the default) means that the forgetting mechanism continues throughout
the chains. Forgetting early parameter sets becomes less useful once the chains
have settled into the posterior mode, so this parameter might be set as an esti-
mate of how long that would take.

adapt_end The final iteration at which we can adapt the multivariate normal proposal.
Thereafter the empirical variance-covariance matrix, its scaling and its weight
remain fixed. This allows the adaptation to be switched off at a certain point to
help ensure convergence of the chain.

pre_diminish The number of updates before adaptation of the scaling parameter starts to di-
minish. Setting pre_diminish = @ means there is diminishing adaptation of the
scaling parameter from the offset, while pre_diminish = Inf would mean there
is never diminishing adaptation. Diminishing adaptation should help the scaling
parameter to converge better, but while the chains find the location and scale of
the posterior mode it might be useful to explore with it switched off.

Details

Much like the simple nested random walk sampler monty_sampler_random_walk, the strategy is to
propose all the shared parameters as a deviation from the current point in parameter space as a single
move and accept or reject as a block. Then we generate points for all the region-specific parameters,
compute the density and then accept or reject these updates independently. This is possible because
the change in likelihood in region A is independent from region B.

monty_sampler_nested_random_walk 35

The adaptive proposal algorithm of the non-nested adaptive sampler monty_sampler_adaptive is
extended here to adaptively tune the variance covariance matrix of each of these parameter chunks.

Value

A monty_sampler object, which can be used with monty_sample

monty_sampler_nested_random_walk

Nested Random Walk Sampler

Description

Create a nested random walk sampler, which uses a symmetric proposal for separable sections of
a model to move around in parameter space. This sampler supports sampling from models where
the likelihood is only computable randomly (e.g., for pmcmc), and requires that models support the
has_parameter_groups property.

Usage
monty_sampler_nested_random_walk(vcv, boundaries = "reflect”)
Arguments
vev A list of variance covariance matrices. We expect this to be a list with elements
base and groups corresponding to the covariance matrix for base parameters (if
any) and groups.
boundaries Control the behaviour of proposals that are outside the model domain. The
supported options are:
* "reflect” (the default): we reflect proposed parameters that lie outside the
domain back into the domain (as many times as needed)
* "reject": we do not evaluate the density function, and return -Inf for its
density instead.
* "ignore": evaluate the point anyway, even if it lies outside the domain.
The initial point selected will lie within the domain, as this is enforced by
monty_sample.
Details

The intended use case for this sampler is for models where the density can be decomposed at least
partially into chunks that are independent from each other. Our motivating example for this is a
model of COVID-19 transmission where some parameters region-specific (e.g., patterns and rates
of contact between individuals), and some parameters are shared across all regions (e.g., intrinsic
properties of the disease such as incubation period).

The strategy is to propose all the shared parameters as a deviation from the current point in param-
eter space as a single move and accept or reject as a block. Then we generate points for all the

36 monty_sampler_random_walk

region-specific parameters, compute the density and then accept or reject these updates indepen-
dently. This is possible because the change in likelihood in region A is independent from region
B.

We expect that this approach will be beneficial in limited situations, but where it is beneficial it is
likely to result in fairly large speed-ups:

* You probably need more than three regions; as the number of regions increases the benefit
of independently accepting or rejecting densities increases (with 1000 separate regions your
chains will mix very slowly for example).

* Your model is fairly computationally heavy so that the density calculation completely domi-
nates the sampling process.

* You do not have access to gradient information for your model; we suspect that HMC will
outperform this approach by some margin because it already includes this independence via
the gradients.

* You can compute your independent calculations in parallel, which help this method reduce
your walk time.

Value

A monty_sampler object, which can be used with monty_sample

monty_sampler_random_walk
Random Walk Sampler

Description

Create a simple random walk sampler, which uses a symmetric proposal to move around parame-
ter space. This sampler supports sampling from models where the likelihood is only computable
randomly (e.g., for pmcmc).

Usage
monty_sampler_random_walk(vcv = NULL, boundaries = "reflect”)
Arguments
vev A variance covariance matrix for the proposal.
boundaries Control the behaviour of proposals that are outside the model domain. The

supported options are:
* "reflect" (the default): we reflect proposed parameters that lie outside the
domain back into the domain (as many times as needed)
* "reject": we do not evaluate the density function, and return -Inf for its
density instead.
* "ignore": evaluate the point anyway, even if it lies outside the domain.
The initial point selected will lie within the domain, as this is enforced by
monty_sample.

monty_sample_continue 37

Value

A monty_sampler object, which can be used with monty_sample

monty_sample_continue Continue sampling

Description

Continue (restart) chains started by monty_sample. Requires that the original chains were run with
restartable = TRUE. Running chains this way will result in the final state being exactly the same
as running for the total (original + continued) number of steps in a single push.

Usage

monty_sample_continue(samples, n_steps, restartable = FALSE, runner = NULL)

Arguments

samples
n_steps

restartable

runner

Value

A monty_samples object created by monty_sample()
The number of new steps to run

Logical, indicating if the chains should be restartable. This will add additional
data to the chains object.

Optionally, a runner for your chains. The default is to continue with the backend
that you used to start the chains via monty_sample (or on the previous restart
with this function). You can use this argument to change the runner, which
might be useful if transferring a pilot run from a high-resource environment to
a lower-resource environment. If given, must be a monty_runner object such
as monty_runner_serial or monty_runner_parallel. You can use this argument to
change the configuration of a runner, as well as the type of runner (e.g., changing
the number of allocated cores).

A list of parameters and densities

38 with_trace_random

with_trace_random Trace random number calls

Description

Trace calls to R’s random-number-generating functions, to detect unexpected use of random number
generation outside of monty’s control.

Usage

with_trace_random(code, max_calls = 5, show_stack = FALSE)

Arguments

code Code to run with tracing on

max_calls Maximum number of calls to report. The default is 5

show_stack Logical, indicating if we should show the stack at the point of the call
Value

The result of evaluating code

Index

D, 3
DO, 3

monty_differentiation, 2
monty_domain_expand, 3
monty_dsl, 3, 4
monty_dsl_distributions, 5
monty_dsl_error_explain, 6
monty_dsl_parse_distribution, 5, 6
monty_model, 3, 4, 7, 10-14
monty_model_combine, 9
monty_model_density, 10, 12
monty_model_direct_sample, /1, 11, 12
monty_model_function, 11
monty_model_gradient, 71, 12
monty_model_properties, 7, 9, 13
monty_model_properties(), 8, 9
monty_observer, 14, 29
monty_packer, 3, 12, 15
monty_rng, 7, 8, 11,17, 25, 26
monty_rng_distributed_pointer
(monty_rng_distributed_state),
24
monty_rng_distributed_state, 24, 26
monty_rng_pointer, 25, 25
monty_runner_parallel, 26, 28, 29, 37
monty_runner_serial, 26, 27, 29, 37
monty_runner_simultaneous, 28
monty_sample, 7, 28, 32, 35-37
monty_sample(), 8, 27, 28, 37
monty_sample_continue, /4, 37
monty_sampler_adaptive, 30, 33, 35
monty_sampler_hmc, 32
monty_sampler_nested_adaptive, 33
monty_sampler_nested_random_walk, 35
monty_sampler_random_walk, 30, 33, 34, 36
monty_sampler_random_walk(), 29

rhyper, 21

with_trace_random, 38

39

	monty_differentiation
	monty_domain_expand
	monty_dsl
	monty_dsl_distributions
	monty_dsl_error_explain
	monty_dsl_parse_distribution
	monty_model
	monty_model_combine
	monty_model_density
	monty_model_direct_sample
	monty_model_function
	monty_model_gradient
	monty_model_properties
	monty_observer
	monty_packer
	monty_rng
	monty_rng_distributed_state
	monty_rng_pointer
	monty_runner_parallel
	monty_runner_serial
	monty_runner_simultaneous
	monty_sample
	monty_sampler_adaptive
	monty_sampler_hmc
	monty_sampler_nested_adaptive
	monty_sampler_nested_random_walk
	monty_sampler_random_walk
	monty_sample_continue
	with_trace_random
	Index

