
Package: orderly2 (via r-universe)
July 8, 2024

Title Orderly Next Generation

Version 1.99.20

Description Reimplementation of orderly based on outpack.

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

URL https://github.com/mrc-ide/orderly2

BugReports https://github.com/mrc-ide/orderly2/issues

Imports R6, cli, fs, gert (>= 1.9.3), jsonlite, openssl, rlang,
rstudioapi, withr, yaml

Suggests DBI, RSQLite, httr, jsonvalidate (>= 1.4.0), knitr, mockery,
pkgload, processx, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Remotes ropensci/jsonvalidate

VignetteBuilder knitr

Language en-GB

Repository https://mrc-ide.r-universe.dev

RemoteUrl https://github.com/mrc-ide/orderly2

RemoteRef main

RemoteSha 195ffc5dbd328977ca5bc180685cc29f06026e9a

Contents
orderly_artefact . 2
orderly_cleanup . 3
orderly_config . 5
orderly_config_set . 6
orderly_copy_files . 7

1

https://github.com/mrc-ide/orderly2
https://github.com/mrc-ide/orderly2/issues

2 orderly_artefact

orderly_dependency . 9
orderly_description . 10
orderly_example . 10
orderly_gitignore_update . 11
orderly_hash_file . 12
orderly_init . 13
orderly_interactive_set_search_options . 14
orderly_list_src . 15
orderly_location_add . 16
orderly_location_list . 17
orderly_location_pull_metadata . 18
orderly_location_pull_packet . 19
orderly_location_push . 20
orderly_location_remove . 21
orderly_location_rename . 21
orderly_metadata . 22
orderly_metadata_extract . 23
orderly_metadata_read . 26
orderly_new . 27
orderly_parameters . 27
orderly_parse_file . 28
orderly_plugin_add_metadata . 29
orderly_plugin_context . 29
orderly_plugin_register . 30
orderly_prune_orphans . 32
orderly_query . 32
orderly_query_explain . 33
orderly_resource . 34
orderly_run . 34
orderly_run_info . 37
orderly_search . 38
orderly_search_options . 39
orderly_shared_resource . 39
orderly_strict_mode . 40
orderly_validate_archive . 41

Index 43

orderly_artefact Declare orderly artefacts

Description

Declare an artefact. By doing this you turn on a number of orderly features; see Details below. You
can have multiple calls to this function within your orderly script.

orderly_cleanup 3

Usage

orderly_artefact(description, files)

Arguments

description The name of the artefact

files The files within this artefact

Details

(1) files matching this will not be copied over from the src directory to the draft directory unless
they are also listed as a resource with orderly_resource(). This feature is only enabled if you
call this function from the top level of the orderly script and if it contains only string literals (no
variables).

(2) if your script fails to produce these files, then orderly_run() will fail, guaranteeing that your
task does really produce the things you need it to.

(3) within the final metadata, your artefacts will have additional metadata; the description that you
provide and a grouping

Value

Undefined

orderly_cleanup Clean up source directory

Description

Find, and delete, file that were generated by running a report. Until you’re comfortable with what
this will do, you are strongly recommended to run orderly_cleanup_status first to see what will
be deleted.

Usage

orderly_cleanup(name = NULL, dry_run = FALSE, root = NULL, locate = TRUE)

orderly_cleanup_status(name = NULL, root = NULL, locate = TRUE)

Arguments

name Name of the report directory to clean (i.e., we look at src/<name> relative to
your orderly root

dry_run Logical, indicating if we should not delete anything, but instead just print infor-
mation about what we would do

4 orderly_cleanup

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does require that the
directory is configured for orderly, and not just outpack (see orderly_init for
details).

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an .outpack directory

Details

After file deletion, we look through and remove all empty directories; orderly2 has similar semantics
here to git where directories are never directly tracked.

For recent gert (not yet on CRAN) we will ask git if files are ignored; if ignored then they are good
candidates for deletion! We encourage you to keep a per-report .gitignore that lists files that will
copy into the source directory, and then we can use that same information to clean up these files
after generation. Importantly, even if a file matches an ignore rule but has been committed to your
repository, it will no longer match the ignore rule.

Value

An (currently unstable) object of class orderly_cleanup_status within which the element delete
indicates files that would be deleted (for orderly_cleanup_status) or that were deleted (for
orderly_cleanup)

Notes for user of orderly1

In orderly1 this function has quite different semantics, because the full set of possible files is always
knowable from the yaml file. So there, we start from the point of view of the list of files then
compare that with the directory.

Examples

Create a simple example:
path <- orderly2::orderly_example("default")

We simulate running a packet interactively by using 'source';
you might have run this line-by-line, or with the "Source"
button in Rstudio.
source(file.path(path, "src/data/data.R"), chdir = TRUE)

Having run this, the output of the report is present in the
source directory:
fs::dir_tree(path)

We can detect what might want cleaning up by running
"orderly_cleanup_status":
orderly2::orderly_cleanup_status("data", root = path)

Soon this will print more nicely to the screen, but for now you
can see that the status of "data.rds" is "derived", which means

orderly_config 5

that orderly knows that it is subject to being cleaned up; the
"delete" element shows what will be deleted.

Do the actual deletion:
orderly2::orderly_cleanup("data", root = path)

orderly_config Read configuration

Description

Read the current orderly configuration, stored within the outpack root, along with any orderly-
specific extensions.

Usage

orderly_config(root = NULL, locate = TRUE)

Arguments

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Value

A list of configuration options:

• core: The most important options about the outpack store, containing:

– path_archive: The path to the human-readable packet archive, or NULL if disabled (set
in orderly_config_set as core.path_archive)

– use_file_store: Indicates if a content-addressable file store is enabled (core.use_file_store)
– require_complete_tree: Indicates if this outpack store requires all dependencies to be

fully available (core.require_complete_tree)
– hash_algorithm: The hash algorithm used (currently not modifiable)

• location: Information about locations; see orderly_location_add, orderly_location_rename
and orderly_location_remove to interact with this configuration, or orderly_location_list to
more simply list available locations. Returns as a data.frame with columns name, id, priority,
type and args, with args being a list column.

• orderly: A list of orderly-specific configuration; this is just the minimum required version
(as minimum_orderly_version).

6 orderly_config_set

Examples

A default configuration in a new temporary directory
path <- withr::local_tempdir()
orderly2::orderly_init(path)
orderly2::orderly_config(path)

orderly_config_set Set configuration options

Description

Set configuration options. Not all can currently be set; this will be expanded over time. See Details.

Usage

orderly_config_set(..., options = list(...), root = NULL, locate = TRUE)

Arguments

... Named options to set (e.g., pass the argument core.require_complete_tree
= TRUE)

options As an alternative to ..., you can pass a list of named options here (e.g., list(core.require_complete_tree
= TRUE)). This interface is typically easier to program against.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Details

Options are set in the order that they are provided. Currently, if setting one option fails, no further
options will be processed but previous ones will be (do not rely on this behaviour, it may change).

Currently you can set:

• core.require_complete_tree

See orderly_init for description of these options.

Value

Nothing

See Also

orderly_config

orderly_copy_files 7

Examples

The default configuration does not include a file store, and
saves output within the "archive" directory:
path <- withr::local_tempdir()
orderly2::orderly_init(path)
fs::dir_tree(path, all = TRUE)

Change this after the fact:
orderly2::orderly_config_set(core.use_file_store = TRUE,

core.path_archive = NULL,
root = path)

fs::dir_tree(path, all = TRUE)

orderly_copy_files Copy files from a packet

Description

Copy files from a packet to anywhere. Similar to orderly_dependency except that this is not used in
an active packet context. You can use this function to pull files from an outpack root to a directory
outside of the control of outpack, for example. Note that all arguments need must be provided by
name, not position, with the exception of the id or query.

Usage

orderly_copy_files(
...,
files,
dest,
overwrite = TRUE,
envir = parent.frame(),
options = NULL,
root = NULL,
locate = TRUE

)

Arguments

... Arguments passed through to orderly_query, perhaps just a query expression

files Files to copy from the other packet. This can be (1) a character vector, in which
case files are copied over without changing their names, (2) a named character
vector, in which case the name will be used as the destination name, or (3)
a data.frame (including tbl_df, or data.frame objects) containing columns
from and to, in which case the files from will be copied with names to.
In all cases, if you want to import a directory of files from a packet, you must
refer to the source with a trailing slash (e.g., c(here = "there/")), which will
create the local directory here/... with files from the upstream packet directory

8 orderly_copy_files

there/. If you omit the slash then an error will be thrown suggesting that you
add a slash if this is what you intended.
You can use a limited form of string interpolation in the names of this argument;
using ${variable} will pick up values from envir and substitute them into
your string. This is similar to the interpolation you might be familiar with from
glue::glue or similar, but much simpler with no concatenation or other fancy
features supported.
Note that there is an unfortunate, but (to us) avoidable inconsistency here; in-
terpolation of values from your environment in the query is done by using
environment:x and in the destination filename by doing ${x}.

dest The directory to copy into

overwrite Overwrite files at the destination; this is typically what you want, but set to
FALSE if you would prefer that an error be thrown if the destination file already
exists.

envir Optionally, an environment to substitute into the query (using the environment:
prefix). The default here is to use the calling environment, but you can explicitly
pass this in if you want to control where this lookup happens.

options Optionally, a orderly_search_options object for controlling how the search is
performed, and which packets should be considered in scope. If not provided,
default options are used (i.e., orderly2::orderly_search_options())

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Details

You can call this function with an id as a string, in which case we do not search for the packet and
proceed regardless of whether or not this id is present. If called with any other arguments (e.g., a
string that does not match the id format, or a named argument name, subquery or parameters) then
we interpret the arguments as a query and orderly_search to find the id. It is an error if this query
does not return exactly one packet id, so you probably want to use latest().

There are different ways that this might fail (or recover from failure):

• if id is not known in the metadata store (not known because it’s not unpacked but also not
known to be present in some other remote) then this will fail because it’s impossible to resolve
the files. Consider refreshing the metadata with orderly_location_pull_metadata to refresh
this.

• if the id is not unpacked and no local copy of the files referred to can be found, we error
by default (but see the next option). However, sometimes the file you refer to might also be
present because you have downloaded a packet that depended on it, or because the content of
the file is unchanged because from some other packet version you have locally.

orderly_dependency 9

• if the id is not unpacked, there is no local copy of the file and if allow_remote is TRUE we will
try and request the file from whatever remote would be selected by orderly_location_pull_packet
for this packet.

Note that empty directories might be created on failure.

Value

Nothing, invisibly. Primarily called for its side effect of copying files from a packet into the direc-
tory dest

orderly_dependency Declare a dependency

Description

Declare a dependency on another packet

Usage

orderly_dependency(name, query, files)

Arguments

name The name of the packet to depend on

query The query to search for; often this will simply be the string latest, indicating
the most recent version. You may want a more complex query here though.

files Files to copy from the other packet. This can be (1) a character vector, in which
case files are copied over without changing their names, (2) a named character
vector, in which case the name will be used as the destination name, or (3)
a data.frame (including tbl_df, or data.frame objects) containing columns
from and to, in which case the files from will be copied with names to.
In all cases, if you want to import a directory of files from a packet, you must
refer to the source with a trailing slash (e.g., c(here = "there/")), which will
create the local directory here/... with files from the upstream packet directory
there/. If you omit the slash then an error will be thrown suggesting that you
add a slash if this is what you intended.
You can use a limited form of string interpolation in the names of this argument;
using ${variable} will pick up values from envir and substitute them into
your string. This is similar to the interpolation you might be familiar with from
glue::glue or similar, but much simpler with no concatenation or other fancy
features supported.
Note that there is an unfortunate, but (to us) avoidable inconsistency here; in-
terpolation of values from your environment in the query is done by using
environment:x and in the destination filename by doing ${x}.

10 orderly_example

Details

See orderly_run for some details about how search options are used to select which locations packets
are found from, and if any data is fetched over the network. If you are running interactively, this
will obviously not work, so you should use orderly_interactive_set_search_options() to set
the options that this function will respond to.

Value

Undefined

orderly_description Describe the current packet

Description

Describe the current packet

Usage

orderly_description(display = NULL, long = NULL, custom = NULL)

Arguments

display A friendly name for the report; this will be displayed in some locations of the
web interface, packit. If given, it must be a scalar character.

long A longer description of the report. If given, it must be a scalar character.

custom Any additional metadata. If given, it must be a named list, with all elements
being scalar atomics (character, number, logical).

Value

Undefined

orderly_example Copy a simple orderly example

Description

Copy a simple orderly example for use in the docs. This function should not form part of your
workflow!

Usage

orderly_example(name, ..., dest = NULL)

orderly_gitignore_update 11

Arguments

name The name of the example to copy. Currently only "default" is supported.

... Arguments passed through to orderly_init()

dest The destination. By default we use withr::local_tempfile() which will cre-
ate a temporary directory that will clean itself up. This is suitable for use from
the orderly examples, but you may prefer to provide your own path. The path
must not already exist.

Value

Invisibly, the path to the example.

Examples

path <- orderly2::orderly_example("default")
orderly2::orderly_list_src(root = path)

orderly_gitignore_update

Update a gitignore file

Description

Update a gitignore, which is useful to prevent accidentally committing files to source control that are
generated. This includes artefacts, shared resources and dependencies (within a report directory)
or at the global level all the contents of the .outpack directory, the draft folder and the archive
directory.

Usage

orderly_gitignore_update(name, root = NULL, locate = TRUE)

Arguments

name The name of the gitignore file to update, or the string "(root)"

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does require that the
directory is configured for orderly, and not just outpack (see orderly_init for
details).

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an .outpack directory

12 orderly_hash_file

Details

If this function fails with a message Can't edit '.gitignore', markers are corrupted, then
look for the special markers within the .gitignore file. It should look like

---VVV--- added by orderly ---VVV----------------
Don't manually edit content between these markers
... patterns
---^^^--- added by orderly ---^^^----------------

We can’t edit the file if:

• any of these lines appears more than once in the file

• there is anything between the first two lines

• they are not in this order

If you get the error message, search and remove these lines and rerun.

Value

Nothing, called for its side effects

orderly_hash_file Compute a hash

Description

Use orderly2’s hashing functions. This is intended for advanced users, in particular those who want
to create hashes that are consistent with orderly2 from within plugins. The default behaviour is
to use the same algorithm as used in the orderly root (via the root argument, and the usual root
location approach). However, if a string is provided for algorithm you can use an alternative
algorithm.

Usage

orderly_hash_file(path, algorithm = NULL, root = NULL, locate = TRUE)

orderly_hash_data(data, algorithm = NULL, root = NULL, locate = TRUE)

Arguments

path The name of the file to hash

algorithm The name of the algorithm to use, overriding that in the orderly root.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

orderly_init 13

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

data A string to hash

Value

A string in the format <algorithm>:<digest>

Examples

orderly2::orderly_hash_data("hello", "md5")

orderly_init Initialise an orderly repository

Description

Initialise an empty orderly repository, or initialise a source copy of an orderly repository (see De-
tails). An orderly repository is defined by the presence of a file orderly_config.yml at its root,
along with a directory .outpack/ at the same level.

Usage

orderly_init(
root = ".",
path_archive = "archive",
use_file_store = FALSE,
require_complete_tree = FALSE,
force = FALSE

)

Arguments

root The path to initialise the repository root at. If the repository is already initialised,
this operation checks that the options passed in are the same as those set in the
repository (erroring if not), but otherwise does nothing. The default path is the
current working directory.

path_archive Path to the archive directory, used to store human-readable copies of packets. If
NULL, no such copy is made, and file_store must be TRUE

use_file_store Logical, indicating if we should use a content-addressable file-store as the source
of truth for packets. If archive is non-NULL, the file-store will be used as the
source of truth and the duplicated files in archive exist only for convenience.

14 orderly_interactive_set_search_options

require_complete_tree

Logical, indicating if we require a complete tree of packets. This currently af-
fects orderly_location_pull_packet, by requiring that it always operates in recur-
sive mode. This is FALSE by default, but set to TRUE if you want your archive to
behave well as a location; if TRUE you will always have all the packets that you
hold metadata about.

force Logical, indicating if we shold initialise orderly even if the directory is not
empty.

Details

It is expected that orderly_config.yml will be saved in version control, but that .outpack will be
excluded from version control; this means that for every clone of your project you will need to call
orderly2::orderly_init() to initialise the .outpack directory. If you forget to do this, an error
will be thrown reminding you of what you need to do.

You can safely call orderly2::orderly_init() on an already-initialised directory, however, any
arguments passed through must exactly match the configuration of the current root, otherwise an
error will be thrown. Please use orderly_config_set to change the configuration, as this ensures that
the change in configuration is possible. If configuration options are given but match those that the
directory already uses, then nothing happens.

If the repository that you call orderly2::orderly_init() on is already initialised with an .outpack
directory but not an orderly_config.yml file, then we will write that file too.

Value

The full, normalised, path to the root, invisibly. Typically this is called only for its side effect.

Examples

We'll use an automatically cleaned-up directory for the root:
path <- withr::local_tempdir()

Initialise a new repository, setting an option:
orderly2::orderly_init(path, use_file_store = TRUE)

fs::dir_tree(path, all = TRUE)

orderly_interactive_set_search_options

Set search options for interactive use

Description

Set search options for interactive use of orderly; see orderly_dependency and orderly_run for de-
tails. This may be either an orderly_search_options object, or a list that will be coerced into one
at the point of use (or NULL). This applies only for the current session, but applies to all interactive
uses of orderly functions that might have received a copy of search_options via orderly_run

orderly_list_src 15

Usage

orderly_interactive_set_search_options(options = NULL)

Arguments

options Optional control over locations, when used with orderly_dependency; see of
Details section of orderly_run.

Value

Nothing, called for its side effects

orderly_list_src List source reports

Description

List source reports - that is, directories within src/ that look suitable for running with orderly; these
will be directories that contain an entrypoint file - a .R file with the same name as the directory (e.g.,
src/data/data.R corresponds to data).

Usage

orderly_list_src(root = NULL, locate = TRUE)

Arguments

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does require that the
directory is configured for orderly, and not just outpack (see orderly_init for
details).

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an .outpack directory

Value

A character vector of names of source reports, suitable for passing to orderly_run

See Also

orderly_metadata_extract for listing packets that have completed

Examples

path <- orderly2::orderly_example("default")
orderly2::orderly_list_src(root = path)

16 orderly_location_add

orderly_location_add Add a new location

Description

Add a new location - a place where other packets might be found and pulled into your local
archive. Currently only file and http based locations are supported, with limited support for cus-
tom locations. Note that adding a location does not pull metadata from it, you need to call or-
derly_location_pull_metadata first.

Usage

orderly_location_add(name, type, args, root = NULL, locate = TRUE)

Arguments

name The short name of the location to use. Cannot be in use, and cannot be one of
local or orphan

type The type of location to add. Currently supported values are path (a location that
exists elsewhere on the filesystem) and http (a location accessed over outpack’s
http API).

args Arguments to the location driver. The arguments here will vary depending on
the type used, see Details.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Details

We currently support two types of locations - path, which points to an outpack archive accessible
by path (e.g., on the same computer or on a mounted network share), http, which requires that an
outpack server is running at some url and uses an HTTP API to communicate, and packit, which
uses Packit as a web server. More types may be added later, and more configuration options to these
location types will definitely be needed in future.

Configuration options for different location types:

Path locations:

• path: The path to the other archive root. This should generally be an absolute path, or the
behaviour of outpack will be unreliable.

orderly_location_list 17

HTTP locations:

Accessing outpack over HTTP requires that an outpack server is running. The interface here is
expected to change as we expand the API, but also as we move to support things like TLS and
authentication.

• url: The location of the server, including protocol, for example http://example.com:8080

Packit locations:

Packit locations work over HTTPS, and include everything in an outpack location but also provide
authentication and later will have more capabilities we think.

• url: The location of the server

• token: The value for your your login token (currently this is a GitHub token with read:org
scope). Later we’ll expand this as other authentication modes are supported.

Custom locations:

All outpack implementations are expected to support path and http locations, with the standard
arguments above. But we expect that some implementations will support custom locations, and
that the argument lists for these may vary between implementations. To allow this, you can pass a
location of type "custom" with a list of arguments. We expect an argument ’driver’ to be present
among this list. For an example of this in action, see the outpack.sharepoint package.

Be warned that we may change this interface in future, in which case you may need to update your
configuration.

Value

Nothing

Warning

The API here may change as we move to support different types of locations.

orderly_location_list List known pack locations

Description

List known locations.

Usage

orderly_location_list(root = NULL, locate = TRUE)

https://mrc-ide.github.io/outpack.sharepoint

18 orderly_location_pull_metadata

Arguments

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Value

A character vector of location names. The special name local will always be present.

See Also

orderly_location_pull_metadata, which can update your outpack index with metadata from any of
the locations listed here.

orderly_location_pull_metadata

Pull metadata from a location

Description

Pull metadata from a location, updating the index. This should always be relatively quick as it
updates only small files that contain information about what can be found in remote packets.

Usage

orderly_location_pull_metadata(location = NULL, root = NULL, locate = TRUE)

Arguments

location The name of a location to pull from (see orderly_location_list for possible val-
ues). If not given, pulls from all locations. The "local" and "orphan" locations
are always up to date and pulling metadata from them does nothing.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Value

Nothing

orderly_location_pull_packet 19

orderly_location_pull_packet

Pull one or more packets from a location

Description

Pull one or more packets (including all their files) into this archive from one or more of your
locations. This will make files available for use as dependencies (e.g., with orderly_dependency).

Usage

orderly_location_pull_packet(
...,
options = NULL,
recursive = NULL,
root = NULL,
locate = TRUE

)

Arguments

... Arguments passed through to orderly_search. In the special case where the first
argument is a character vector of ids and there are no named dot arguments, then
we interpret this argument as a vector of ids directly. Be careful here, your query
may pull a lot of data

• in particular, passing NULL will match everything that every remote has!

options Options passed to orderly_search. The option allow_remote must be TRUE as
otherwise no packet could possibly be pulled, so an error is thrown if this is
FALSE.

recursive If non-NULL, a logical, indicating if we should recursively pull all packets
that are referenced by the packets specified in id. This might copy a lot of
data! If NULL, we default to the value given by the the configuration option
require_complete_tree.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Details

It is possible that it will take a long time to pull packets, if you are moving a lot of data or if you are
operating over a slow connection. Cancelling and resuming a pull should be fairly efficient, as we
keep track of files that are copied over even in the case of an interrupted pull.

20 orderly_location_push

Value

Invisibly, the ids of packets that were pulled

orderly_location_push Push tree to location

Description

Push tree to location. This function works out what packets are not known at the location and then
what files are required to create them. It then pushes all the files required to build all packets and
then pushes the missing metadata to the server. If the process is interrupted it is safe to resume and
will only transfer files and packets that were missed on a previous call.

Usage

orderly_location_push(packet_id, location, root = NULL, locate = TRUE)

Arguments

packet_id One or more packets to push to the server

location The name of a location to push to (see orderly_location_list for possible values).

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Value

Invisibly, details on the information that was actually moved (which might be more or less than
what was requested, depending on the dependencies of packets and what was already known on the
other location).

orderly_location_remove 21

orderly_location_remove

Remove a location

Description

Remove an existing location. Any packets from this location and not known elsewhere will now be
associated with the ’orphan’ location instead.

Usage

orderly_location_remove(name, root = NULL, locate = TRUE)

Arguments

name The short name of the location. Cannot remove local or orphan

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Value

Nothing

orderly_location_rename

Rename a location

Description

Rename an existing location

Usage

orderly_location_rename(old, new, root = NULL, locate = TRUE)

22 orderly_metadata

Arguments

old The current short name of the location. Cannot rename local or orphan

new The desired short name of the location. Cannot be one of local or orphan

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Value

Nothing

orderly_metadata Read outpack metadata

Description

Read metadata for a particular id. You may want to use orderly_search to find an id corresponding
to a particular query.

Usage

orderly_metadata(id, root = NULL, locate = FALSE)

Arguments

id The id to fetch metadata for. An error will be thrown if this id is not known

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Value

A list of metadata. See the outpack schema for details (https://github.com/mrc-ide/outpack)

orderly_metadata_extract 23

orderly_metadata_extract

Extract metadata from orderly2 packets

Description

Extract metadata from a group of packets. This is an experimental high-level function for interact-
ing with the metadata in a way that we hope will be useful. We’ll expand this a bit as time goes on,
based on feedback we get so let us know what you think. See Details for how to use this.

Usage

orderly_metadata_extract(..., extract = NULL, root = NULL, locate = TRUE)

Arguments

... Arguments passed through to orderly_search. In the special case where the first
argument is a character vector of ids and there are no named dot arguments, then
we interpret this argument as a vector of ids directly.

extract A character vector of columns to extract, possibly named. See Details for the
format.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Details

Extracting data from outpack metadata is challenging to do in a way that works in data structures
familiar to R users, because it is naturally tree structured, and because not all metadata may be
present in all packets (e.g., a packet that does not depend on another will not have a dependency
section, and one that was run in a context without git will not have git metadata). If you just want
the raw tree-structured data, you can always use orderly_metadata to load the full metadata for any
packet (even one that is not currently available on your computer, just known about it) and the
structure of the data will remain fairly constant across orderly2 versions.

However, sometimes we want to extract data in order to ask specific questions like:

• what parameter combinations are available across a range of packets?

• when were a particular set of packets used?

• what files did these packets produce?

Later we’d like to ask even more complex questions like:

24 orderly_metadata_extract

• at what version did the file graph.png change?
• what inputs changed between these versions?

...but being able to answer these questions requires a similar approach to interrogating metadata
across a range of packets.

The orderly_metadata_extract function aims to simplify the process of pulling out bits of meta-
data and arranging it into a data.frame (of sorts) for you. It has a little mini-language in the
extract argument for doing some simple rewriting of results, but you can always do this yourself.

In order to use function you need to know what metadata are available; we will expand the vignette
with more worked examples here to make this easier to understand. The function works on top-level
keys, of which there are:

• id: the packet id (this is always returned)
• name: the packet name
• parameters: a key-value pair of values, with string keys and atomic values. There is no guar-

antee about presence of keys between packets, or their types.
• time: a key-value pair of times, with string keys and time values (see DateTimeClasses; these

are stored as seconds since 1970 in the actual metadata). At present start and end are always
present.

• files: files present in each packet. This is a data.frame (per packet), each with columns path
(relative), size (in bytes) and hash.

• depends: dependencies used each packet. This is a data.frame (per packet), each with
columns packet (id), query (string, used to find packet) and files (another data.frame
with columns there and here corresponding to filenames upstream and in this packet, re-
spectively)

• git: either metadata about the state of git or null. If given then sha and branch are strings,
while url is an array of strings/character vector (can have zero, one or more elements).

• session: some information about the session that the packet was run in (this is unstandardised,
and even the orderly version may change)

• custom: additional metadata added by its respective engine. For packets run by orderly2,
there will be a orderly field here, which is itself a list:

– artefacts: A data.frame with artefact information, containing columns description (a
string) and paths (a list column of paths).

– shared: A data.frame of the copied shared resources with their original name (there) and
name as copied into the packet (here).

– role: A data.frame of identified roles of files, with columns path and role.
– description: A list of information from orderly_description with human-readable descrip-

tions and tags.
– session: A list of information about the session as run, with a list platform containing

information about the platform (R version as version, operating system as os and system
name as system) and packages containing columns package , version and attached.

The nesting here makes providing a universally useful data format difficult; if considering files we
have a data.frame with a files column, which is a list of data.frames; similar nestedness applies
to depends and the orderly custom data. However, you should be able to fairly easily process the
data into the format you need it in.

The simplest extraction uses names of top-level keys:

orderly_metadata_extract 25

extract = c("name", "parameters", "files")

This creates a data.frame with columns corresponding to these keys, one row per packet. Because
name is always a string, it will be a character vector, but because parameters and files are more
complex, these will be list columns.

You must not provide id; it is always returned and always first as a character vector column.

You can rename the columns by providing a name to entries within extract, for example:

extract = c("name", pars = "parameters", "files")

is the same as above, except that that the parameters column has been renamed pars.

More interestingly, we can index into a structure like parameters; suppose we want the value of
the parameter x, we could write:

extract = c(x = "parameters.x")

which is allowed because for each packet the parameters element is a list.

However, we do not know what type x is (and it might vary between packets). We can add that
information ourselves though and write:

extract = c(x = "parameters.x is number")

to create an numeric column. If any packet has a value of x that is non-integer, your call to
orderly_metadata_extract will fail with an error, and if a packet lacks a value of x, a miss-
ing value of the appropriate type will be added.

Note that this does not do any coercion to number, it will error if a non-NULL non-numeric value
is found. Valid types for use with is <type> are boolean, number and string (note that these
differ slightly from R’s names because we want to emphasise that these are scalar quantities; also
note that there is no integer here as this may produce unexpected errors with integer-like numeric
values). You can also use list but this is the default. Things in the schema that are known to be
scalar atomics (such as name) will be automatically simplified.

You can index into the array-valued elements (files and depends) in the same way as for the
object-valued elements:

extract = c(file_path = "files.path", file_hash = "files.hash")

would get you a list column of file names per packet and another of hashes, but this is probably less
useful than the data.frame you’d get from extracting just files because you no longer have the
hash information aligned.

You can index fairly deeply; it should be possible to get the orderly "display name" with:

extract = c(display = "custom.orderly.description.display is string")

If the path you need to extract has a dot in it (most likely a package name for a plugin, such as
custom.orderly.db) you need to escape the dot with a backslash (so, custom.orderly\.db).
You will probably need two slashes or use a raw string (in recent versions of R).

26 orderly_metadata_read

Value

A data.frame, the columns of which vary based on the names of extract; see Details for more
information.

Custom ’orderly’ metadata

Within custom.orderly, additional fields can be extracted. The format of this is subject to change,
both in the stored metadata and schema (in the short term) and in the way we deserialise it. It is
probably best not to rely on this right now, and we will expand this section when you can.

orderly_metadata_read Read outpack metadata json file

Description

Low-level function for reading metadata and deserialising it. This function can be used to directly
read a metadata json file without reference to a root which contains it. It may be useful in the context
of reading a metadata file written out as part of a failed run.

Usage

orderly_metadata_read(path, plugins = TRUE)

Arguments

path Path to the json file

plugins Try and deserialise data from all loaded plugins (see Details).

Details

Custom metadata saved by plugins may not be deserialised as expected when called with this func-
tion, as it is designed to operate separately from a valid orderly root (i.e., it will load data from
any file regardless of where it came from). If plugins is TRUE (the default) then we will deserialise
all data that matches any loaded plugin. This means that the behaviour of this function depends on if
you have loaded the plugin packages. You can force this by running orderly2::orderly_config()
within any orderly directory, which will load any declared plugins.

Value

A list of outpack metadata; see the schema for details. In contrast to reading the json file directly
with jsonlite::fromJSON, this function will take care to convert scalar and length-one vectors
into the expected types.

orderly_new 27

orderly_new Create a new report

Description

Create a new empty report.

Usage

orderly_new(name, template = NULL, force = FALSE, root = NULL, locate = TRUE)

Arguments

name The name of the report

template The template to use. The only acceptable values for now are NULL (uses the built-
in default) and FALSE which suppresses any default content. We may support
customisable templates in future - let us know if this would be useful.

force Create an orderly file - <name>.R within an existing directory src/<name>; this
may be useful if you have already created the directory and some files first but
want help creating the orderly file.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does require that the
directory is configured for orderly, and not just outpack (see orderly_init for
details).

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an .outpack directory

Value

Nothing, called for its side effects only

orderly_parameters Declare orderly parameters

Description

Declare orderly parameters. You should only have one call to this within your file, though this is
not enforced! Typically you’d put it very close to the top, though the order does not really matter.
Parameters are scalar atomic values (e.g. a string, number or boolean) and defaults must be present
literally (i.e., they may not come from a variable itself). Provide NULL if you do not have a default,
in which case this parameter will be required.

28 orderly_parse_file

Usage

orderly_parameters(...)

Arguments

... Any number of parameters

Value

Undefined

Behaviour in interactive sessions

When running interactively (i.e., via source() or running an orderly file session by copy/paste or
in Rstudio), the orderly_parameters() function has different behaviour.

First, we look in the current environment (most likely the global environment) for values of your pa-
rameters - that is, variables bound to the names of your parameters. For any parameters that are not
found we will look at the default values and use these if possible, but if not possible then we will ei-
ther error or prompt based on the global option orderly_interactive_parameters_missing_error.
If this is TRUE, then we will ask you to enter a value for the parameters (strings will need to be en-
tered with quotes).

orderly_parse_file Parse the orderly entrypoint script

Description

For expert use only.

Usage

orderly_parse_file(path)

orderly_parse_expr(exprs, filename)

Arguments

path Path to orderly_* script

exprs Parsed AST from orderly_* script

filename Name of orderly_* file to include in metadata

Details

Parses details of any calls to the orderly_ in-script functions into intermediate representation for
downstream use. Also validates that any calls to orderly_* in-script functions are well-formed.

orderly_plugin_add_metadata 29

Value

Parsed orderly entrypoint script

orderly_plugin_add_metadata

Add metadata from plugin

Description

Add plugin-specific metadata to a running packet. This will take some describing. You accumulate
any number of bits of metadata into arbitrary fields, and then later on serialise these to json.

Usage

orderly_plugin_add_metadata(name, field, data)

Arguments

name The name of the plugin; must be the same as used in orderly_plugin_register
and orderly_plugin_context

field The name of a field to add the data to. This is required even if your plugin only
produces one sort of data, in which case you can remove it later on within your
serialisation function.

data Arbitrary data to be added to the currently running packet

Value

Nothing, called only for its side effects

orderly_plugin_context

Fetch plugin context

Description

Fetch the running context, for use within a plugin. The intention here is that within free functions
that your plugin makes available, you will call this function to get information about the state of a
packet. You will then typically call orderly_plugin_add_metadata() afterwards.

Usage

orderly_plugin_context(name, envir)

30 orderly_plugin_register

Arguments

name Name of the plugin
envir The environment of the calling function. You can typically pass parent.frame()

(or rlang::caller_env()) here if the function calling orderly_plugin_context()
is the function that would be called by a user. This argument only has an effect
in interactive use (where envir is almost certainly the global environment).

Details

When a plugin function is called, orderly2 will be running in one of two modes; (1) from within
orderly_run(), in which case we’re part way through creating a packet in a brand new directory,
and possibly using a special environment for evaluation, or (2) interactively, with a user developing
their report. The plugin needs to be able to support both modes, and this function will return
information about the state to help you cope with either case.

Value

A list with elements:

• is_active: a logical, indicating if we’re running under orderly_run(); you may need to
change behaviour depending on this value.

• path: the path of the running packet. This is almost always the working directory, unless the
packet contains calls to setwd() or similar. You may create files here.

• config: the configuration for this plugin, after processing with the plugin’s read function
(see orderly_plugin_register)

• envir: the environment that the packet is running in. Often this will be the global environ-
ment, but do not assume this! You may read and write from this environment.

• src: the path to the packet source directory. This is different to the current directory when the
packet is running, but the same when the user is interactively working with a report. You may
read from this directory but must not write to it

• parameters: the parameters as passed through to the run the report.

See Also

orderly_plugin_register, orderly_plugin_add_metadata

orderly_plugin_register

Register an orderly plugin

Description

Create an orderly plugin. A plugin is typically defined by a package and is used to extend orderly by
enabling new functionality, declared in orderly_config.yml and your orderly file, and affecting
the running of reports primarily by creating new objects in the report environment. This system is
discussed in more detail in vignette("plugins"), but will be expanded (likely in breaking ways)
soon.

orderly_plugin_register 31

Usage

orderly_plugin_register(
name,
config,
serialise = NULL,
deserialise = NULL,
cleanup = NULL,
schema = NULL

)

Arguments

name The name of the plugin, typically the package name

config A function to read, check and process the configuration section in orderly_config.yml.
This function will be passed the deserialised data from the plugin’s section of
orderly_config.yml, and the full path to that file. As the order of loading
of plugins is not defined, each plugin must standalone and should not try and
interact with other plugins at load. It should return a processed copy of the
configuration data, to be passed in as the second argument to read.

serialise A function to serialise any metadata added by the plugin’s functions to the out-
pack metadata. It will be passed a list of all entries pushed in via orderly_plugin_add_metadata();
this is a named list with names corresponding to the field argument to orderly_plugin_add_metadata
and each list element being an unnamed list with values corresponding to data.
If NULL, then no serialisation is done, and no metadata from your plugin will be
added.

deserialise A function to deserialise any metadata serialised by the serialise function.
This is intended to help deal with issues disambiguating unserialising objects
from json (scalars vs arrays of lenth 1, data.frames vs lists-of-lists etc), and
will make your plugin nicer to work with orderly_metadata_extract(). This
function will be given a single argument data which is the data from jsonlite::fromJSON(...,
simplifyVector = FALSE) and you should apply any required simplifications
yourself, returning a modified copy of the argument.

cleanup Optionally, a function to clean up any state that your plugin uses. You can call
orderly_plugin_context from within this function and access anything you
need from that. If not given, then no cleanup is done.

schema Optionally a path, within the package, to a schema for the metadata created by
this plugin; you should omit the .json extension. So if your file contains in its
sources the file inst/plugin/myschema.json you would pass plugin/myschema.
See vignette("plugins") for details.

Value

Nothing, this function is called for its side effect of registering a plugin.

32 orderly_query

orderly_prune_orphans Prune orphan packet metadata

Description

Prune orphan packets from your metadata store. This function can be used to remove references
to packets that are no longer reachable; this could have happened because you deleted a packet
manually from the archive and ran orderly_validate_archive or because you removed a location.

Usage

orderly_prune_orphans(root = NULL, locate = TRUE)

Arguments

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Details

If an orphan packet is not used anywhere, then we can easily drop it - it’s as if it never existed.
If it is referenced by metadata that you know about from elsewhere but not locally, then that is a
problem for the upstream location (and one that should not happen). If you have referenced it in a
packet that you have run locally, the the metadata is not deleted.

We expose this function mostly for users who want to expunge permanently any reference to previ-
ously run packets. We hope that there should never need to really be a reason to run it.

Value

Invisibly, a character vector of orphaned packet ids

orderly_query Construct outpack query

Description

Construct an outpack query, typically then passed through to orderly_search

Usage

orderly_query(expr, name = NULL, scope = NULL, subquery = NULL)

orderly_query_explain 33

Arguments

expr The query expression. A NULL expression matches everything.
name Optionally, the name of the packet to scope the query on. This will be inter-

sected with scope arg and is a shorthand way of running scope = list(name =
"name")

scope Optionally, a scope query to limit the packets searched by pars

subquery Optionally, named list of subqueries which can be referenced by name from the
expr.

Value

An orderly_query object, which should not be modified, but which can be passed to orderly_search()

orderly_query_explain Explain a query

Description

Explain how a query has or has not matched. This is experimental and the output will change. At
the moment, it can tell you why a query matches, or if fails to match based on one of a number of
&&-ed together clauses.

Usage

orderly_query_explain(
...,
parameters = NULL,
envir = parent.frame(),
options = NULL,
root = NULL

)

Arguments

... Arguments passed through to orderly_query, perhaps just a query expression
parameters Optionally, a named list of parameters to substitute into the query (using the

this: prefix)
envir Optionally, an environment to substitute into the query (using the environment:

prefix). The default here is to use the calling environment, but you can explicitly
pass this in if you want to control where this lookup happens.

options Optionally, a orderly_search_options object for controlling how the search is
performed, and which packets should be considered in scope. If not provided,
default options are used (i.e., orderly2::orderly_search_options())

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

34 orderly_run

Value

An object of class orderly_query_explain, which can be inspected (contents subject to change)
and which has a print method which will show a user-friendly summary of the query result.

orderly_resource Declare orderly resources

Description

Declare that a file, or group of files, are an orderly resource. By explicitly declaring files as resources
orderly will mark the files as immutable inputs and validate that your analysis does not modify them
when run with orderly_run()

Usage

orderly_resource(files)

Arguments

files Any number of names of files

Value

Invisibly, a character vector of resources included by the call. Don’t rely on the order of these files
if they are expanded from directories, as this is likely platform dependent.

orderly_run Run a report

Description

Run a report. This will create a new directory in drafts/<reportname>, copy your declared re-
sources there, run your script and check that all expected artefacts were created.

Usage

orderly_run(
name,
parameters = NULL,
envir = NULL,
echo = TRUE,
search_options = NULL,
root = NULL,
locate = TRUE

)

orderly_run 35

Arguments

name Name of the report to run. Any leading ./ src/ or trailing / path parts will be
removed (e.g., if added by autocomplete).

parameters Parameters passed to the report. A named list of parameters declared in the
orderly.yml. Each parameter must be a scalar character, numeric, integer or
logical.

envir The environment that will be used to evaluate the report script; by default we
use the global environment, which may not always be what is wanted.

echo Optional logical to control printing output from source() to the console.

search_options Optional control over locations, when used with orderly_dependency; converted
into a orderly_search_options object, see Details.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does require that the
directory is configured for orderly, and not just outpack (see orderly_init for
details).

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an .outpack directory

Value

The id of the created report (a string)

Locations used in dependency resolution

If your packet depends on other packets, you will want to control the locations that are used to find
appropriate packets. The control for this is passed through this function and not as an argument
to orderly_dependency because this is a property of the way that a packet is created and not of a
packet itself; importantly different users may have different names for their locations so it makes
little sense to encode the location name into the source code. Alternatively, you want to use different
locations in different contexts (initial development where you want to include local copies packets
as possible dependencies vs resolving dependencies only as they would be resolved on one of your
locations!

Similarly, you might want to include packets that are known by other locations but are not currently
downloaded onto this machine - pulling these packets in could take anything from seconds to hours
depending on their size and the speed of your network connection (but not pulling in the packets
could mean that your packet fails to run).

To allow for control over this you can pass in an argument search_options, which is a or-
derly_search_options object, and allows control over the names of the locations to use, whether
metadata should be refreshed before we pull anything and if packets that are not currently down-
loaded should be considered candidates.

This has no effect when running interactively, in which case you can specify the search options (root
specific) with orderly_interactive_set_search_options

36 orderly_run

Which packets might be selected from locations?

The search_options argument controls where outpack searches for packets with the given query
and if anything might be moved over the network (or from one outpack archive to another). By
default everything is resolved locally only; that is we can only depend on packets that are unpacked
within our current archive. If you pass a search_options argument that contains allow_remote =
TRUE (see orderly_search_options then packets that are known anywhere are candidates for using as
dependencies and if needed we will pull the resolved files from a remote location. Note that even if
the packet is not locally present this might not be needed - if you have the same content anywhere
else in an unpacked packet we will reuse the same content without re-fetching.

If pull_metadata = TRUE, then we will refresh location metadata before pulling, and the location
argument controls which locations are pulled from.

Equivalence to the old use_draft option

The above location handling generalises orderly (v1)’s old use_draft option, in terms of the
location argument to orderly2::orderly_search_options‘:

• use_draft = TRUE is location = "local"

• use_draft = FALSE is location = c(...) where you should provide all locations except lo-
cal (setdiff(orderly2::orderly_location_list(), "local"))

• use_draft = "newer" is location = NULL

(this last option was the one most people preferred so is the new default behaviour). In addition,
you could resolve dependencies as they currently exist on production right now with the options:

location = "production", pull_metadata = TRUE, require_unpacked = FALSE

which updates your current metadata from production, then runs queries against only packets known
on that remote, then depends on them even if you don’t (yet) have them locally. This functionality
was never available in orderly version 1, though we had intended to support it.

Running with a source tree separate from outpack root

Sometimes it is useful to run things from a different place on disk to your outpack root. We know
of two cases where this has come up:

• when running reports within a runner on a server, we make a clean clone of the source tree
at a particular git reference into a new temporary directory and then run the report there, but
have it insert into an orderly repo at a fixed and non-temporary location.

• we have a user for whom it is more convenient torun their report on a hard drive but store the
archive and metadata on a (larger) shared drive.

In the first instance, we have a source path at <src> which contains the file orderly_config.yml
and the directory src/ with our source reports, and a separate path <root> which contains the
directory .outpack/ with all the metadata - it may also have an unpacked archive, and a .git/
directory depending on the configuration. (Later this will make more sense once we support a
"bare" outpack layout.)

orderly_run_info 37

Manually setting report source directory

To manually set the report source directory, you will need to set the path of the directory as the
ORDERLY_REPORT_SRC environment variable.

Examples

Create a simple example:
path <- orderly2::orderly_example("default")

Run the 'data' task:
orderly2::orderly_run("data", root = path)

After running, a finished packet appears in the archive:
fs::dir_tree(path)

and we can query the metadata:
orderly2::orderly_metadata_extract(name = "data", root = path)

orderly_run_info Information about currently running report

Description

Fetch information about the actively running report. This allows you to reflect information about
your report back as part of the report, for example embedding the current report id, or informa-
tion about computed dependencies. This information is in a slightly different format to orderly
version 1.x and does not (currently) include information about dependencies when run outside of
orderly_run, but this was never reliable previously.

Usage

orderly_run_info()

Value

A list with elements

• name: The name of the current report
• id: The id of the current report, NA if running interactively
• root: The orderly root path
• depends: A data frame with information about the dependencies (not available interactively)

– index: an integer sequence along calls to orderly_dependency

– name: the name of the dependency
– query: the query used to find the dependency
– id: the computed id of the included packet
– filename: the file used from the packet
– as: the filename used locally

38 orderly_search

orderly_search Query outpack’s database

Description

Evaluate a query against the outpack database, returning a vector of matching packet ids. Note that
by default this only searches through packets that are unpacked and available for direct use on this
computer; to search within packets known to other locations (and that we might know about via
their metadata) you will need to use the options argument.

Usage

orderly_search(
...,
parameters = NULL,
envir = parent.frame(),
options = NULL,
root = NULL

)

Arguments

... Arguments passed through to orderly_query, perhaps just a query expression

parameters Optionally, a named list of parameters to substitute into the query (using the
this: prefix)

envir Optionally, an environment to substitute into the query (using the environment:
prefix). The default here is to use the calling environment, but you can explicitly
pass this in if you want to control where this lookup happens.

options Optionally, a orderly_search_options object for controlling how the search is
performed, and which packets should be considered in scope. If not provided,
default options are used (i.e., orderly2::orderly_search_options())

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

Value

A character vector of matching ids. In the case of no match from a query returning a single value
(e.g., latest(...) or single(...)) this will be a character missing value (NA_character_)

orderly_search_options 39

orderly_search_options

Packet search options

Description

Options for controlling how packet searches are carried out, for example via orderly_search and
orderly_run. The details here are never included in the metadata alongside the query (that is, they’re
not part of the query even though they affect it).

Usage

orderly_search_options(
location = NULL,
allow_remote = FALSE,
pull_metadata = FALSE

)

Arguments

location Optional vector of locations to pull from. We might in future expand this to
allow wildcards or exceptions.

allow_remote Logical, indicating if we should allow packets to be found that are not currently
unpacked (i.e., are known only to a location that we have metadata from). If this
is TRUE, then in conjunction with orderly_dependency you might pull a large
quantity of data.

pull_metadata Logical, indicating if we should pull metadata immediately before the search. If
location is given, then we will pass this through to orderly_location_pull_metadata
to filter locations to update. If pulling many packets in sequence, you will want
to update this option to FALSE after the first pull.

Value

An object of class orderly_search_options which should not be modified after creation (but see
note about pull_metadata)

orderly_shared_resource

Copy shared resources into a packet directory

Description

Copy shared resources into a packet directory. You can use this to share common resources (data
or code) between multiple packets. Additional metadata will be added to keep track of where the
files came from. Using this function requires the shared resources directory shared/ exists at the
orderly root; an error will be raised if this is not configured when we attempt to fetch files.

40 orderly_strict_mode

Usage

orderly_shared_resource(...)

Arguments

... The shared resources to copy. If arguments are named, the name will be the des-
tination file while the value is the filename within the shared resource directory.
You can use a limited form of string interpolation in the names of this argument;
using ${variable} will pick up values from envir and substitute them into
your string. This is similar to the interpolation you might be familiar with from
glue::glue or similar, but much simpler with no concatenation or other fancy
features supported.

Value

Invisibly, a data.frame with columns here (the fileames as as copied into the running packet) and
there (the filenames within shared/). As for orderly_resource, do not rely on the ordering where
directory expansion was performed.

orderly_strict_mode Enable orderly strict mode

Description

Put orderly2 into "strict mode", which is closer to the defaults in orderly 1.0.0; in this mode only ex-
plicitly included files (via orderly_resource and orderly_shared_resource) are copied when running
a packet, and we warn about any unexpected files at the end of the run. Using strict mode allows
orderly2 to be more aggressive in how it deletes files within the source directory, more accurate in
what it reports to you, and faster to start packets after developing them interactively.

Usage

orderly_strict_mode()

Details

In future, we may extend strict mode to allow requiring that no computation occurs within orderly
functions (i.e., that the requirements to run a packet are fully known before actually running it).
Most likely this will not be the default behaviour and orderly_strict_mode will gain an argument.

We will allow server processes to either override this value (enabling it even when it is not explicitly
given) and/or require it.

Value

Undefined

orderly_validate_archive 41

orderly_validate_archive

Validate unpacked packets.

Description

Validate unpacked packets. Over time, expect this function to become more fully featured, validat-
ing more.

Usage

orderly_validate_archive(..., action = "inform", root = NULL, locate = TRUE)

Arguments

... Either arguments that a search can be constructed from (useful options here in-
clude name = "something"), a character vector of ids, or leave empty to validate
everything.

action The action to take on finding an invalid packet. See Details.

root The path to the root directory, or NULL (the default) to search for one from the
current working directory if locate is TRUE. This function does not require that
the directory is configured for orderly, and can be any outpack root (see or-
derly_init for details).

locate Logical, indicating if the root should be searched for. If TRUE, then we looks
in the directory given for root (or the working directory if NULL) and then up
through its parents until it finds an .outpack directory or orderly_config.yml

Details

The actions that we can take on finding an invalid packet are:

• inform (the default): just print information about the problem

• orphan: mark the packet as orphaned within the metadata, but do not touch the files in your
archive (by default the directory archive/) - this is a safe option and will leave you in a
consistent state without deleting anything.

• delete: in addition to marking the packet as an orphan, also delete the files from your archive.

Later, we will add a "repair" option to try and fix broken packets.

The validation interacts with the option core.require_complete_tree; if this option is TRUE, then
a packet is only valid if all its (recursive) dependencies are also valid, so the action will apply to
packets that have also had their upstream dependencies invalidated. This validation will happen
even if the query implied by ... does not include these packets if a complete tree is required.

The validation will also interact with core.use_file_store once repair is supported, as this be-
comes trivial.

42 orderly_validate_archive

Value

Invisibly, a character vector of repaired (or invalid) packets.

Index

data.frame, 5, 7, 9, 24
DateTimeClasses, 24

orderly_artefact, 2
orderly_cleanup, 3
orderly_cleanup_status

(orderly_cleanup), 3
orderly_config, 5
orderly_config_set, 5, 6, 14
orderly_copy_files, 7
orderly_dependency, 7, 9, 14, 15, 19, 35, 37,

39
orderly_description, 10, 24
orderly_example, 10
orderly_gitignore_update, 11
orderly_hash_data (orderly_hash_file),

12
orderly_hash_file, 12
orderly_init, 4–6, 8, 11, 12, 13, 15, 16,

18–23, 27, 32, 33, 35, 38, 41
orderly_init(), 11
orderly_interactive_set_search_options,

14, 35
orderly_interactive_set_search_options(),

10
orderly_list_src, 15
orderly_location_add, 5, 16
orderly_location_list, 5, 17, 18, 20
orderly_location_pull_metadata, 8, 16,

18, 18, 39
orderly_location_pull_packet, 9, 14, 19
orderly_location_push, 20
orderly_location_remove, 5, 21
orderly_location_rename, 5, 21
orderly_metadata, 22, 23
orderly_metadata_extract, 15, 23
orderly_metadata_extract(), 31
orderly_metadata_read, 26
orderly_new, 27
orderly_parameters, 27

orderly_parse_expr
(orderly_parse_file), 28

orderly_parse_file, 28
orderly_plugin_add_metadata, 29, 30
orderly_plugin_add_metadata(), 29, 31
orderly_plugin_context, 29, 29
orderly_plugin_register, 29, 30, 30
orderly_prune_orphans, 32
orderly_query, 7, 32, 33, 38
orderly_query_explain, 33
orderly_resource, 34, 40
orderly_resource(), 3
orderly_run, 10, 14, 15, 34, 37, 39
orderly_run(), 3, 30, 34
orderly_run_info, 37
orderly_search, 8, 19, 22, 23, 32, 38, 39
orderly_search(), 33
orderly_search_options, 8, 14, 33, 35, 36,

38, 39
orderly_shared_resource, 39, 40
orderly_strict_mode, 40
orderly_validate_archive, 32, 41

setwd(), 30

43

	orderly_artefact
	orderly_cleanup
	orderly_config
	orderly_config_set
	orderly_copy_files
	orderly_dependency
	orderly_description
	orderly_example
	orderly_gitignore_update
	orderly_hash_file
	orderly_init
	orderly_interactive_set_search_options
	orderly_list_src
	orderly_location_add
	orderly_location_list
	orderly_location_pull_metadata
	orderly_location_pull_packet
	orderly_location_push
	orderly_location_remove
	orderly_location_rename
	orderly_metadata
	orderly_metadata_extract
	orderly_metadata_read
	orderly_new
	orderly_parameters
	orderly_parse_file
	orderly_plugin_add_metadata
	orderly_plugin_context
	orderly_plugin_register
	orderly_prune_orphans
	orderly_query
	orderly_query_explain
	orderly_resource
	orderly_run
	orderly_run_info
	orderly_search
	orderly_search_options
	orderly_shared_resource
	orderly_strict_mode
	orderly_validate_archive
	Index

