Package: dust 0.15.3

Rich FitzJohn

dust: Iterate Multiple Realisations of Stochastic Models

An Engine for simulation of stochastic models. Includes support for running stochastic models in parallel, either with shared or varying parameters. Simulations are run efficiently in compiled code and can be run with a fraction of simulated states returned to R, allowing control over memory usage. Support is provided for building bootstrap particle filter for performing Sequential Monte Carlo (e.g., Gordon et al. 1993 <doi:10.1049/ip-f-2.1993.0015>). The core of the simulation engine is the 'xoshiro256**' algorithm (Blackman and Vigna <arxiv:1805.01407>), and the package is further described in FitzJohn et al 2021 <doi:10.12688/wellcomeopenres.16466.2>.

Authors:Rich FitzJohn [aut, cre], Alex Hill [aut], John Lees [aut], Imperial College of Science, Technology and Medicine [cph]

dust_0.15.3.tar.gz
dust_0.15.3.zip(r-4.5)dust_0.15.3.zip(r-4.4)dust_0.15.3.zip(r-4.3)
dust_0.15.3.tgz(r-4.5-x86_64)dust_0.15.3.tgz(r-4.5-arm64)dust_0.15.3.tgz(r-4.4-x86_64)dust_0.15.3.tgz(r-4.4-arm64)dust_0.15.3.tgz(r-4.3-x86_64)dust_0.15.3.tgz(r-4.3-arm64)
dust_0.15.3.tar.gz(r-4.5-noble)dust_0.15.3.tar.gz(r-4.4-noble)
dust_0.15.3.tgz(r-4.4-emscripten)dust_0.15.3.tgz(r-4.3-emscripten)
dust.pdf |dust.html
dust/json (API)
NEWS

# Install 'dust' in R:
install.packages('dust', repos = c('https://mrc-ide.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mrc-ide/dust/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

cppopenmp

7.84 score 18 stars 3 packages 60 scripts 15 exports 15 dependencies

Last updated 4 months agofrom:1bcce5f84c (on master). Checks:1 OK, 10 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 30 2025
R-4.5-win-x86_64NOTEJan 30 2025
R-4.5-mac-x86_64NOTEJan 30 2025
R-4.5-mac-aarch64NOTEJan 30 2025
R-4.5-linux-x86_64NOTEJan 30 2025
R-4.4-win-x86_64NOTEJan 30 2025
R-4.4-mac-x86_64NOTEJan 30 2025
R-4.4-mac-aarch64NOTEJan 30 2025
R-4.3-win-x86_64NOTEJan 30 2025
R-4.3-mac-x86_64NOTEJan 30 2025
R-4.3-mac-aarch64NOTEJan 30 2025

Exports:dustdust_cuda_configurationdust_cuda_optionsdust_datadust_exampledust_generatedust_ode_controldust_openmp_supportdust_openmp_threadsdust_packagedust_repair_environmentdust_rngdust_rng_distributed_pointerdust_rng_distributed_statedust_rng_pointer

Dependencies:callrclicpp11descfsgluelifecyclepkgbuildpkgloadprocessxpsR6rlangrprojrootwithr

Algorithms used to compute random numbers

Rendered fromrng_algorithms.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2021-11-16
Started: 2021-11-16

Comparing models and data

Rendered fromdata.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2023-06-28
Started: 2021-08-25

Distributed parallel random numbers

Rendered fromrng_distributed.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2022-11-08
Started: 2021-11-17

Introduction to dust

Rendered fromdust.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2023-04-27
Started: 2020-07-06

Multiple parameter sets

Rendered frommulti.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2021-10-20
Started: 2021-02-24

Principles and design of dust

Rendered fromdesign.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2023-03-17
Started: 2021-02-25

Random number generation

Rendered fromrng.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2022-11-02
Started: 2020-07-06

Running models on GPUs with CUDA

Rendered fromgpu.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2022-11-08
Started: 2021-11-08

Using RNGs from packages

Rendered fromrng_package.Rmdusingknitr::rmarkdownon Jan 30 2025.

Last update: 2023-04-27
Started: 2021-11-12